
GPU-based Adaptive Surface Reconstruction
for Real-time SPH Fluids

Shuchen Du Takashi Kanai
The University of Tokyo The University of Tokyo

shuchen@graco.c.u-tokyo.ac.jp kanait@acm.org

ABSTRACT
We propose a GPU-based adaptive surface reconstruction algorithm for Smoothed-Particle Hydrodynamics (SPH)
fluids. The adaptive surface is reconstructed from 3-level grids as proposed by [Akinci13]. The novel part of
our algorithm is a pattern based approach for crack filling, which is recognized as the most challengeable part of
building adaptive surfaces. Unlike prior CPU-based approaches [Shu95, Shekhar96, Westermann99, Akinci13]
that detect and fill cracks according to some criteria during program running that were slow and unrobust, all
the possible crack patterns are analyzed and defined in advance and later, during program running, the cracks are
detected and filled according to the patterns. Our approach is thus robust, GPU-friendly, and easy to implement.
Results obtained show that our algorithm can produce surface meshes of almost the same quality as those produced
by the conventional Marching Cubes method, with significantly reduced computation time and memory usage.
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1 INTRODUCTION
In SPH-based fluid simulation, especially for water
simulation, carrying out only particle representation is
not enough. A surface built upon the particles is de-
sired. For real-time or interactive applications, not only
must particle simulation be carried out, but surface re-
construction also need to be computed at high speed.
Surface reconstruction for SPH fluids is well studied
in Computer Graphics research. With these methods,
generally an isosurface of some implicit functions is
computed and a triangle mesh is constructed using the
Marching Cubes (MC) [Lorensen87] method. Also, for
real-time applications, GPU-based versions of MC are
utilized such as [Dyken08]. However, with conven-
tional MC methods, because the triangle resolution is
uniform, the construction of high-resolution models of
large data set requires considerable computation time
and a large amount of memory. In order to reduce the
cost of uniform MC, Adaptive Marching Cubes (AMC)
algorithms such as [Shu95, Shekhar96, Westermann99,
Akinci13] have been proposed, in which high resolu-
tion triangles are used to capture the thin features of
highly deformable surface parts while low resolution
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triangles are used for flat surface areas. AMC requires
less memory and time for generating triangle meshes of
similar quality as these uniform meshes. However, ap-
proaches proposed to date are all CPU-based, which are
very slow and more or less cannot be used in real-time
or interactive applications.

We propose a fast GPU-based adaptive surface
reconstruction algorithm for Smoothed-Particle Hy-
drodynamics (SPH) fluids. Our method has several
characteristics: First, the algorithm is totally im-
plemented on GPU and it is faster than the CPU
implementation. Secondly, we analyze all the possible
cracks that may occur and define them as patterns and
later, during program running, the cracks are simply
detected and filled by referring to the pre-defined crack
patterns.

Our work is categorized as a novel extension of
[Akinci13] with an acceleration of performance by
GPU implementation. Unlike [Akinci13] which is
implemented on CPU, our algorithm is designed from
scratch for execution on GPU, thus making it totally
different from that of [Akinci13]. Specifically, in
[Akinci13], the existence of surface cracks is checked
during the algorithm running, and if a crack exists, the
crack is filled on-the-fly. In contrast, our algorithm is
completely procedural; cracks are simply detected and
filled by referring to the pre-defined crack patterns. Our
method is robust enough to deal with all the surface
cracks.

Our proposed algorithm is a totally GPU-based adap-
tive surface reconstruction one. Specifically, it con-



sists of two parts: First, for each level grid, we pro-
pose array-based data structures to store the cell ver-
tices, edge vertices and the numbers of triangles gen-
erated in the tesselated cells according to their local
indices. This enables parallel accessing among differ-
ent grid properties for MC implementation without the
need to maintain the relationship among vertices, edges
and tesselated cells in memory. Secondly, we propose
a GPU-friendly algorithm for detecting and filling sur-
face cracks based on pre-defined crack patterns.

2 RELATED WORK
2.1 SPH Fluid Simulation
Smoothed Particle Hydrodynamics (SPH) is a La-
grangian particle framework originally presented by
[Lucy77, Gingold77] for astrophysical simulations.
Desbrun and Gascuel [Desbrun96] introduced the
method to the CG community to simulate highly
deformable objects and Müller et al. [Müller03]
extended it to the simulation of fluids in real-time for
interactive applications. On the other hand, Adams
et al. [Adams07] extended the uniform SPH model
to an adaptive one to simulate large scale fluids with
reduced number of particles. Harada et al. [Harada07]
improved the performance on GPUs. A comprehensive
survey on recent state-of-the-art SPH developments
was conducted by [Ihmsen14].

2.2 Marching Cubes/Adaptive Marching
Cubes

Marching Cubes (MC) [Lorensen87] is the dominant
method for contouring an implicit field using trian-
gle meshes. Several useful methods of building a sur-
face for SPH fluids based on MC are proposed [Zhu05,
Solenthaler07, Yu10, Akinci12].

In the typical MC, a mesh with a large number of
triangles is extracted from a uniform high-resolution
grid. However, a large number of redundant surface
triangles are also generated. In order to reduce such
triangles while maintaining their resolution, Adaptive
Marching Cubes (AMC) methods [Shu95, Shekhar96,
Westermann99] were proposed which adaptively ex-
tract triangles using octrees. Recently, Akinci et al.
[Akinci13] use grids of three levels to construct an
adaptive surface mesh. The above methods reduce re-
dundant triangles and memory used to reconstruct large
scale meshes efficiently. However, one problem with
such methods is that they generally produce cracks be-
tween different levels of grids. Thus, with real-time
applications, obtaining high quality surface mesh with
no cracks is as important as accelerating their perfor-
mance.

In order to fill the cracks and obtain watertight surface
mesh, Shu et al. [Shu95] proposed the detection of

crack regions and filling them using polygons with
the same boundary shape as these regions. Their
method produces surface meshes with triangles and
non-triangle polygons, which causes inefficiency in
subsequent processes such as rendering and other
geometry processing tasks that require triangle meshes.
Shekhar et al. [Shekhar96] first identified cracks
surrounded by iso-curves of different level grids and
projected the fine iso-curves to coarse ones. There are
two problems with their method: First, T-vertices are
generated and these are bad for rendering; secondly,
not all the cracks are surrounded by iso-curves of
different level grids. There can be cracks that are
only surrounded by fine iso-curves. Westermann
et al. [Westermann99] uses triangle fans to fill the
cracks. However, the triangle fans are constructed
by traversing the neighbor grid cells that are difficult
for parallel implementation. Recently, Akinci et al.
[Akinci13] proposed a method for detecting cracks
surrounded by at least one intersection at the inner
edges and filling them using triangles. The main issue
with their approach is that not all cracks contain inner
edge intersections. There can be cracks which only
contain intersections of outer edges.
[Akinci13] is the most relevant research to ours. In
order to reconstruct an adaptive surface from 3-level
grids, [Akinci13] uses a map-based data structure
whose key is the position of a grid vertex and value is
the corresponding implicit function value. However,
their approach is difficult to implement on GPU in
parallel, because all the grid vertices of different
levels are mixed together in the data structure. In
our GPU-based parallel implementation, we use three
arrays to store the implicit values of grid vertices level
by level. The corresponding adaptive surface of each
level is reconstructed by invoking a kernel function of
CUDA. In order to fill the surface cracks, [Akinci13]
checks whether a crack occurs using information on
cell neighborhood and intersection of inner edge.
Then, they fill the cracks by traversing outer edges
and pushing an edge to a crack array if it has an
intersection. However, their CPU-based approach is
not robust enough as discussed above and difficult to
extend to GPU.
As for other adaptive surface reconstruction methods,
Ju et al. [Ju02] proposed Dual Contouring (DC) which
is a feature-preserving isosurfacing method that ex-
tracts crack-free surfaces from both uniform and adap-
tive octree grids whose edges contain Hermite data.
Schaefer et al. [Schaefer07] proposed the Manifold
Dual Contouring method for correcting topology errors
on surfaces generated by DC to guarantee manifold sur-
faces. However, mapping DC to GPU is not straight-
forward for its octree data structure and QEF based
vertex positioning which requires considerable mem-
ory [Schmitz09]. In addition, Ho et al. [Ho05] also



proposed a method called Cubical Marching Squares
(CMS) that can extract crack-free adaptive surfaces
from Hermite data in octrees. However, like DC, map-
ping CMS to GPU is not straightforward for its octree
data structure.

With parallel adaptive surface reconstruction, Zhou et
al. [Zhou11] introduced a Look Up Tables (LUT)
based technique for efficiently computing the neighbor-
hood information of every octree node and utilized such
data structure to construct AMCs on GPU. The main
problem with their node based approach is that all the
computations have to refer to the data of parent, child
and neighboring nodes, which makes the data structure
complicated and uses a large amount of memory.

3 PARALLEL SURFACE RECON-
STRUCTION ON 3-LEVEL GRIDS

In this section, we present our parallel algorithm for
the 3-level surface reconstruction on SPH fluids be-
fore crack filling. Here, the SPH fluid models can
be uniform [Müller03] or adaptive [Adams07]. It is
noted that, in order to approximate the surface mesh
accurately, the criterion for determining the subdivision
level of cells is different. The level difference of two
adjacent cells that have a common face should be less
than 1 for the convenience of the next crack filling pro-
cess.

We designed our algorithm based on 3-level grids like
[Akinci13] rather than octrees because in an octree, the
neighborhood conditions are usually different from cell
to cell and have to be recorded using specially designed
complex data structures as in [Zhou11]. However, 3-
level grids are simple and locally uniform, which is
important for designing parallel algorithms. For real-
time fluid surface extraction, we believe that surfaces
of three levels are enough to reduce the memory and
time needed for construction while still capturing thin
features in the surfaces. The flexibility here is that the
users can add the number of subdivision levels for spe-
cific applications by adding the corresponding data ar-
rays and applying an algorithm similar to existing ones.

For uniform SPH fluids, the input is a particle position
array whose elements are the coordinates of particles
and a cell level array discretizing the simulation domain
whose elements indicate which level the cells are on.
For adaptive SPH fluids, besides the two arrays above,
a particle level array whose elements are particle level
numbers is also required. The outputs are reconstructed
adaptive surface meshes that are stored in six arrays.
For each level grid, we use two arrays to store the cor-
responding surface mesh; a surface vertex array whose
elements are the coordinates of surface mesh vertices
and a surface triangle array whose elements are trian-
gles formed by the indices of the corresponding vertex
array.

Our algorithm for adaptive surface reconstruction per-
formed before crack filling for uniform SPH fluids is
described in the following, in which arrays are largely
used as data structures. The algorithm is further di-
vided into two parts, Algorithm 1 and 2. Algorithm 1
comprises of three steps, Step 1 to Step 3, which make
up the preprocessing part preparing for later operations.
Algorithm 2 comprises of four steps, Step 4 to Step 7,
which describe details about MC surface reconstruction
for each level.

Here, for array A , we represent the value of an array
element as A [i] and the CUDA thread that manipulates
the element as ai. Then we explain the algorithm in
detail step by step. For simplicity, we illustrate it in 2D
while a 3D version can be derived similarly. Also, we
only take level-2 cells as an example. Cells of other
levels can be computed similarly.

Figure 1: 3-level grid cells. From left to right: level-1
grid cell, level-2 grid cell, level-3 grid cell.

Figure 2: Cell splitting on 8× 8 grid. Top: All grid
cells are set to level-1 initially. Bottom left: A level-1
grid cell is split to level-3 if it only contains one fluid
particle. Bottom right: The adjacent level-1 cells are
split into level-2 cells. Finally, there are four level-3
cells, 11 level-2 cells, and 50 level-1 cells in the grid.

The array data structures of level-2 cells in 2D are ex-
plained in detail in Figure 3. There are five arrays corre-
sponding to level-2 cells: V 2 (vertex coordinate index
array), I 2 (cell vertex implicit value array), E 2 (cell
edge vertex array), H 2 (cell edge vertex normal vector
array) and C 2 (triangle number array), whose lengths
and element types are illustrated in Figure 3 where N2
is the number of level-2 cells.

We store the different data of each cell in the corre-
sponding arrays according to its level and "nth" cell in
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Figure 3: Storage of all data for 24th cell. The top-left shows the local indices and coordinates of vertices, edges
and tessellated cells of a level-2 cell. The top-right shows the global cell indices and all the level-2 cells extracted
from Figure 2. Bottom: Array structures C 2, V 2, I 2, E 2 and mutual relationships for the 24th cell.

the corresponding level. For example, as shown in Fig-
ure 3, the 24th cell is a level-2 cell and also the 3rd

level-2 cell globally. In order to store the data of the
24th cell, we should find the start and end global indices
in the corresponding arrays concerning the 3rd level-2
cell. We also use local indices shown in different colors
in Figure 3 to assist our parallel access algorithm. For
V 2 and I 2, the start and end global indices are 18 and
26. In the elements prior to index 18, we store the cor-
responding vertex information of the first two level-2
cells. The local indices are from 0 to 8 and each in-
dex points to a vertex with the same index shown in the
top-left of Figure 3. Similarly, the start and end global
indices and the corresponding local indices for E 2 and
C 2 are shown in Figure 3.

Since the manipulations of all threads in a kernel func-
tion are the same, we illustrate the first corresponding
elements of the 24th cell that are shaded in light green,
with all the local indices 0, as shown in Figure 3.

We developed our parallel algorithms based on the two
key observations:

• All the elements (vertex, edge and tessellated cell)
of a level-2 cell are compactly stored in the corre-

sponding arrays sequentially according to the global
indices shown in the top-right of Figure 3.

• In a level-2 cell, the numbers of vertices, edges and
tessellated cells are constants, which are equal to 9,
12 and 4, respectively. We use them to construct lo-
cal indices, from which we can obtain the relative
position for a specific element in a level-2 cell as
shown in Figure 3. We can also obtain the relation-
ship between different elements whose indices point
to different arrays.

3.1 Step 1: Particle Registration

Since we split cells according to the number of parti-
cles contained, it is necessary to count the number of
particles inside each cell. We use a CUDA kernel func-
tion here to do this in parallel. The total number of
threads for the function is the same as the number of
particles and each thread manipulates a particle. If par-
ticle i is computed as in cell j, we increase C[ j] (a jth

element of cell level array in Algorithm 1) by one using
CUDA atomicAdd() function, which guarantees thread
synchronization.



Algorithm 1 Preprocessing

Input:
P: particle position array;
C: cell level array, initialized with 0;

Output:
C: cell level array, containing the level number of
each cell;
// Step 1: Particle Registration

1: for all pi of P in parallel, do
2: compute which cell pi is in and increase the cor-

responding C[ j] by 1 using atomicAdd();
3: end for

// Step 2: Cell Splitting
4: for all ci of C in parallel, do
5: if C[i] is 1 then
6: C[i]⇐ 3;
7: else
8: C[i]⇐ 1;
9: end if
10: end for

// Step 3: Cell Level Adjusting
11: for all ci of C in parallel, do
12: if C[i] is 3 then
13: for all C j that has a common face shared with

ci in serial, do
14: if C[ j] is 1 then
15: C[ j]⇐ 2;
16: end if
17: end for
18: end if
19: end for

3.2 Step 2: Cell Splitting
Here we just split a cell into level-3 if the number of
particles inside is one as shown in Figure 2 (bottom
left). Otherwise the cell is assigned to level-1. We do
this because we are interested in surface areas of fluids,
especially where splash occurs. A common observation
is that splash areas are usually formed by isolated par-
ticles, and the corresponding surfaces need to be con-
structed with finest level cells to fully catch the thin fea-
tures. On the contrary, in other areas without splash, we
just use the coarsest level cells to approximate the cor-
responding surface. The criterion here is flexible and
users can tune it to obtain surfaces of different adap-
tive extent. For example, in Section 5, we apply our
algorithm to a 2-scale adaptive SPH fluids, where the
criterion of cell splitting is based on the number of fine
particles inside each cell and users can tune the number
to adjust the adaptive extent of the generated surface.

3.3 Step 3: Cell Level Adjusting
For all level-3 cells, we adjust all the neighbor cells
with which a common face is shared to level-2 as shown

Algorithm 2 MC Surface Reconstruction for Level-2
Cells
Input:

V 2: vertex coordinate index array;
I 2: cell vertex implicit value array;
E 2: cell edge vertex array;
H 2: cell edge vertex normal vector array;
C 2: triangle number array;

Output:
E 2: cell edge vertex array;
T 2: triangle array;
// Step 4: Cell Vertex Coordinates and Implicit
Field Computation

1: for all vi of V 2 in parallel, do
2: compute the coordinate V 2[i];
3: compute implicit value I 2[i];
4: end for

// Step 5: Triangle Number Counting of Tessel-
lated Cells According to MC Patterns

5: for all ci of C 2 in parallel, do
6: find the coordinates of end vertices of tessellated

cell ci from V 2;
7: count the number of triangles generated by MC

patterns and store it in C 2[i];
8: end for
9: scan and compact C 2;

// Step 6: Edge Vertex Computation
10: for all ei of E 2 in parallel, do
11: access the two vertices of edge ei from V 2;
12: compute the coordinate and normal vector of

edge vertex and store them in E 2[i] and H 2[i];
13: end for
14: scan and compact E 2;

// Step 7: Triangle Generation According to MC
Patterns

15: for all ci of C 2 in parallel, do
16: access the edge vertices of tessellated cell ci

from E 2;
17: generate triangles inside it and store them in T 2;
18: end for

in Figure 2 (bottom right). Consequently, the level dif-
ference between two cells is less than 1. We do this for
two reasons: First, a smoother surface will be gained
by splitting the former level-1 cells to level-2; second,
it makes the later crack filling process simpler.

3.4 Step 4: Cell Vertex Coordinates and
Implicit Field Computation

In this step, the coordinates and implicit values of cell
vertices are computed and stored in array V 2 and I 2,
respectively. We initialize V 2 with global cell indices
as shown in the top-right of Figure 3. For each vi ∈
V 2 in parallel, we first compute its local index from
its global index and find its relative position in a level-



2 cell. Then its coordinate and a value of an implicit
function are computed and stored in V 2[i] and I 2[i],
respectively. Here, for simplicity, we just use the SPH
density function [Müller03] as shown in Equation (1) to
compute the implicit values on cell vertices as,

I 2[i] = ∑
j

m jW (V 2[i]−p j,h), (1)

where m j is the mass of neighboring fluid particles
within supporting radius h, p j is the position of neigh-
boring fluid particles, and W is the kernel function. The
implicit function used here is just a simple choice to
test our crack-filling algorithm, and other choices to
build smooth surfaces of high quality [Zhu05, Yu10,
Akinci13] are recommendable.

3.5 Step 5: Triangle Number Counting
of Tessellated Cells According to MC
Patterns

In this step, the number of triangles generated in each
tessellated level-2 cell is stored in array C 2. For each
ci ∈C 2 in parallel, we first compute its local index from
its global index and find its relative position in a level-
2 cell. Then, its four vertices are accessed and trian-
gles generated inside a cell are counted according to
MC patterns.

After the kernel function, we scan and compact C 2 us-
ing [Harris07] for triangle generation described later.

3.6 Step 6: Edge Vertex Computation
In this step, the edge vertices are computed and stored
in array E 2. For each ei ∈ E 2 in parallel, we first com-
pute its local index from its global index and find its
relative position in a level-2 cell. The corresponding
coordinates and implicit values of its two vertices are
accessed from V 2 and I 2 and then, an edge vertex
whose iso-value is zero is computed.

With conventional methods such as [Lorensen87], the
edge vertex is computed using linear interpolation for
uniform grids. However, linear interpolation does not
perform well in adaptive grids because for the com-
mon edges between two cells of different levels, the
generated edge vertices from two sides do not coincide,
which causes trouble in the later crack filling process.
In order to make the edge vertices coincide, we use
bi-section interpolation [Press07] which is an asymp-
totic iterative approximation method. On our 3-level
grids, the number of iteration in bi-section is set to
n,n+ 1,n+ 2 for a level-3, level-2 and level-1 edges,
respectively, where n is a user-defined parameter. Here
we set n = 5.

After the coordinate of edge vertex is computed, we
compute its normal vector for rendering. With conven-
tional methods, the normal vector of an edge vertex is

computed by first computing the normal vectors of tri-
angles that are adjacent to it and then taking the average
of those vectors. However, that method is not straight-
forward to be used here because the triangles adjacent
to an edge vertex may belong to different levels, which
are stored in different arrays and cannot be accessed
straightforwardly. In order to resolve this problem, for
an edge vertex i, we just use Equation (2) derived in the
method as [Müller03],

H 2[i] = ∑
j

m j∇W (V 2[i]−p j,h), (2)

to compute the gradient of Equation (1) as its normal
vector and store it in H 2[i]. Then H 2[i] is normalized.

Finally, we scan and compact E 2 and H 2 using
[Harris07] for the triangle generation described later.

3.7 Step 7: Triangle Generation Accord-
ing to MC Patterns

In this step, the triangles are generated and stored in
array T 2. The C 2 here is after compaction. For each
ci ∈ C 2 in parallel, we first obtain its global index from
the corresponding scanned array and access the vertices
generated on its four edges from compacted E 2. Fi-
nally, the triangles are generated according to MC pat-
terns.

Before crack filling

After crack filling

Figure 4: Top: Fluid surface before crack filling. Bot-
tom: Fluid surface after crack filling.

4 PARALLEL CRACK FILLING US-
ING PRE-DEFINED PATTERNS

The surfaces reconstructed in Section 3 contain
cracks and the biggest challenge for our adaptive
surface reconstruction algorithm is crack filling as
shown in Figure 4. Unlike prior MC based methods
detecting and filling cracks during program running
[Shu95, Shekhar96, Westermann99, Akinci13], our
algorithm has two distinguished features for parallel



implementation. First, we present an intuitive and ro-
bust method to detect all the possible cracks, including
their shapes, constructions and triangulations. Sec-
ondly, we pre-define all the cracks as patterns before
the running phase. If cracks occur during running, they
are filled using the corresponding pre-defined patterns.

In this section, we first explain the reason why cracks
occur. Then we propose our method to analyze and de-
fine all the possible crack patterns. Finally, we propose
the parallel implementation of crack filling on GPUs.

A

B

C

Level-1 cell

Level-2 cell

Common face

A’ C’

Figure 5: Crack (triangle ABC) generated on common
face (green) between level-1 cell and level-2 cell.

4.1 Causes of Cracks
As described in prior works such as [Akinci13, Shu95],
cracks occur in the common faces between two grid
cells of different levels if different edge points are gen-
erated on two sides. As shown in Figure 5, on the com-
mon face between a level-1 and a level-2 cell, the edge
points generated from the level-1 side are points A and
C while the edge points generated from the level-2 side
are point A’, B and C’. As discussed in Section 3.6, A
coincides with A’ and C coincides with C’ so that there
are only three distinctive points. As a result of MC al-
gorithm, the iso-curve of the level-1 side is line segment
AC while the iso-curves of the level-2 side are line seg-
ments AB and BC. Most of the time, AB and BC are
not in the same line so that they cannot coincide with
AC, which generates a crack as triangle ABC.

4.2 Definition of All Possible Crack Pat-
terns

As discussed above, cracks occur on the common face
between different level grid cells and are defined by the
edge points from two sides. Also, as shown in Section
3.6, the edge points coincide with the common edges
between different level grid cells. That is to say, if
an edge point is generated in the low level edge side,
there must be an identical edge point generated in the
corresponding high level edge side. So we only care
about the edge points generated on the high level side
when analyzing crack patterns. Since the level differ-
ence between two different level cells is exactly one,
there are only two conditions: A level-1 cell is adjacent

Algorithm 3 Crack Detection and Filling for level-1
and level-2 cells in x direction.
Input:

C: cell level array;
E 2: edge point array of level-2 cells after com-
paction;

Output:
F 2

12x: array to store triangles for crack filling for
level-1 and level-2 cells in x direction;

1: for all ci of C in parallel, do
2: find the neighboring level-1 and level-2 cells in

x direction;
3: find edge points from E 2 on the level-2 cell side;
4: compute crack filling triangles and store them in

F 2
12x according to crack patterns;

5: end for

to a level-2 cell; a level-2 cell is adjacent to a level-3
cell. We treat the common face between a level-2 and
a level-3 grid cell as four small faces between a level-1
cell and a level-2 cell, so it is sufficient to analyze only
the first condition.

Due to the paper length limit, the method of determin-
ing all the possible crack patterns is described in the
supplemental material in detail.

4.3 Storage of Crack Patterns
As defined in our patterns, there are at most 12 trian-
gles necessary to fill a crack. Since each triangle is
represented by the indices of its three vertices and we
also need an integer to store the number of triangles,
3× 12+ 1 = 37 integers are needed to represent a pat-
tern as an element in the pattern array, whose length
is 212. The storage method is shown in Figure 6. The
first number shows that three triangles are needed to fill
the crack and the following nine numbers represent the
local indices of three triangles.

(3, 1, 4, 9, 4, 7, 9, 6, 9, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Number of triangles

Edge indices which form triangles

Figure 6: Storage of crack information.

4.4 Parallel Implementation of Crack De-
tection and Filling on GPUs

In 2D case for our implementation, we use four arrays:
F 2

12x, F 2
12y, F 2

23x and F 2
23y, to store the crack filling tri-

angles. They fill the cracks between level-1 and level-2
cells, and the cracks between level-2 and level-3 cracks,
in x and y directions, respectively. We use four CUDA



kernel functions for crack filling. Each function ma-
nipulates an array. The algorithm of the functions is
described in Algorithm 3. Here F 2

12x is used as an ex-
ample and a triangle is stored as three indices to the
compacted E 2 array.
In the parallel checking of common faces between two
different level cells, we also define the local indices on
the common face as patterns in advance. In 2D, there
are four conditions: level-1 cell on the left and level-2
cell on the right and vice versa, and level-2 cell on the
left and level-3 cell on the right and vice versa.
After obtaining the edge indices, we check whether
there are edge points in the edges or not and, if there
are, we find the corresponding crack pattern. Finally,
we use triangles to fill the crack according to the pat-
tern.

5 RESULTS AND DISCUSSION
We implemented our algorithms on an Intel R© CoreTM

i7-2600 CPU with 24GB RAM and an NVIDIA R©
GeForce R© GTX TITAN GPU with 6GB VRAM. The
program was written in C++ and NVIDIA R© CUDA
[CUDA07].
To optimize our implementation, the data to be ren-
dered like triangles, edge points and normal vectors are
all stored using OpenGL VBOs. Manipulations on the
VBOs can be switched between CUDA kernel func-
tions and graphics render pipeline using CUDA Re-
source APIs without data transfer between CPU and
GPU.
Due to the limit of GPU VRAM, we only demonstrate
our algorithm on small examples, with the number of
triangles up to 100k and the number of SPH particles
up to 16k. Large-scale examples can be implemented
on multi-GPU environment if the readers are interested.
The kernel radius for implicit function sampling equals
the kernel radius of SPH particles, and the time step is
fixed to 0.005.
The results of applying our GPU adaptive surface re-
construction algorithm to dam breaking simulation are
shown in Figure 7. The left and right columns show
the wireframe and shaded versions of adaptive surfaces
reconstructed by our algorithm. The three images from
top to bottom of each column are screenshots of 100th,
200th, and 500th frame of the corresponding simulation.
The grid used in the simulation starts with uniform
level-1 cells with a resolution of 81× 43× 43. Dur-
ing simulation, some level-1 cells are split into level-2
and level-3 cells and then adaptive surfaces are gener-
ated. We also compare the adaptive surfaces with their
corresponding uniform ones generated from a uniform
grid whose resolution is 321×171×171.
The comparison of their computation time is shown in
Figure 8(a) and the comparison of their number of trian-
gles is shown in Figure 8(b). As shown in Figure 8(a),

the time required for surface construction is shorter in
our approach, and also as shown in Figure 8(b), the
number of triangles in our approach is considerably less
than the uniform MC algorithm.

In Figure 8(c), different parts of computation time for
adaptive surface reconstruction are shown. It can be
seen that the parts for computing scalar values on im-
plicit field are increasing. However, the crack filling
part that does not require implicit field calculation re-
mains nearly unchanged. Figure 8(d) shows the num-
ber of triangles in different levels. The biggest num-
ber comes from level-3 triangles, which are generated
from level-3 grid cells. Other three kinds of triangles
are nearly equal.

Figure 9 is another example of our approach. The left is
adaptive surfaces displayed in wireframe and the right
is the same surface but shaded. It can be seen that the
splash areas of the adaptive surface are all preserved.

6 CONCLUSION AND FUTURE
WORK

We propose a novel GPU-based adaptive surface recon-
struction algorithm for SPH fluids which can produce
surface meshes similar to those generated by the con-
ventional MC method with significantly reduced com-
putation time and memory usage. Our algorithm has
the following unique features: (1) MC algorithm is im-
plemented on a 3-level grid level by level in parallel;
(2) All the possible cracks, including their shapes, con-
struction vertices, and triangulations, are analyzed in
advance and stored as crack patterns; (3) The cracks are
detected and filled according to crack patterns in paral-
lel. These features make our algorithm robust in crack
filling, simple and easy to implement on GPU, and also
fast and effective in performance.

In the future, we think our algorithm can be used in
GPU-based parallel surface tracking and topology fix-
ing for adaptive triangle meshes. This is done by ex-
tending and optimizing some previous works which
apply pre-defined patterns for surface topology fixing,
such as [Müller09]. In [Müller09], the surface mesh is
tracked on uniform grids and the implementation is on
CPU, which is too slow to run in real-time. It can be
extended to adaptive grids and optimized by GPU im-
plementation based on our algorithm, which generates
real-time performance and interactive applications for
surface tracking.
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Figure 7: The result of surface reconstruction on adaptive SPH water.
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