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In this supplemental material, we describe an idea on
how to determine the shape of cracks and show all the
possible crack patterns used in the crack filling algo-
rithm of our adaptive surface reconstruction method.
All crack patterns are stored in the pattern array de-
scribed in Section 4.3 of our paper.

1 DETERMINING CRACK SHAPES
We determine the shape of a crack in four steps as
shown in Figure 1. In step 1, the edge vertices are all
generated as a template. Here the upper-left small face
as indicated by the red box is an ambiguous face that
has four edge vertices and their connections are am-
biguous. We use the asymptotic decider method pro-
posed by Nielson and Hamann [Nielson91] to resolve
the connection problem. Here we just assume the im-
plicit value sign of the intersection point of the asymp-
totes, which is the red vertex in the red box illustrated
in Figure 1, as positive. In step 2, we separate the com-
mon face into the coarse side and fine side. The upper
face is the coarse side. The two edge vertices gener-
ated are colored in purple. The lower face is the fine
side. With the upper face, we assume that fluid flows
inside perpendicularly to the rectangular plane, and en-
ters the cross section between the fluid and rectangular
plane shaded in light blue in the figure. With the lower
face, we assume that fluid flows outside the rectangu-
lar plane, thus exiting the cross section shaded in light
blue. In step 3, we can see that some parts (shaded in
light blue) counteract with each other while others do
not (shaded in dark blue). In step 4, the parts that do
not counteract each other are defined as cracks (shaded
in light yellow).

2 DEFINING ALL POSSIBLE CRACK
PATTERNS

In order to define all the possible crack patterns, we
should analyze all the possible conditions of edge ver-
tices occurring on the level-2 side of the common face.
There are twelve edges in a level-2 cell face with in-
dices ranging from 0 to 11. Each edge will potentially
generate an edge vertex so that there are 212 conditions
in total. We classify the edge vertices into two groups:
points generated in inner edges with indices 2, 3, 8 and

+

+ +

-

-

- +

-+

+

Template

Fluids flow in from
coarse face point of view

Fluids flow out from
fine face point of view

Some parts of fluids
counteract

while some do not

Cracks generated
from parts

that cannot counteract

1 2 3 4

Figure 1: Defining crack shape in four steps.

9 as shown in Figure 2; points generated at outer edges
with the other indices. The cracks can also be classi-
fied into two groups: Cracks with and without inner
edge vertices. Since a crack can at most have four in-
ner edge vertices, we can further classify the cracks into
five groups:

Group 1: Cracks with one inner edge vertices.

Group 2: Cracks with two inner edge vertices.

Group 3: Cracks with three inner edge vertices.

Group 4: Cracks with four inner edge vertices.

Group 5: Cracks with no inner edge vertices.
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Figure 2: Edge indices of level-2 cell. Edges with in-
dices 2, 3, 8 and 9 are inner edges. The others are outer
edges.



2.1 Analyzing Patterns of Group 1
Here we analyze all the possible crack patterns of
Group 1. The other four groups can be analyzed
similarly. The patterns shown here are unique in terms
of rotation and reflection. Here we take the iso-value
to be exactly zero where an edge vertex is generated
between two edge vertices with positive and negative
implicit function values. We also assume that the
implicit function values inside the iso-surface are
positive and those outside the iso-surface are negative.
We obtain all the patterns of Group 1 as shown in
Figure 4.

Because there is one inner edge vertex, the implicit
value signs of the five vertices belonging to the inner
edges are known. What we do not know are the signs
of the other four vertices which are circled in purple as
shown on the left side of Figure 4. There are five con-
ditions for four signs: all negative, one positive, two
positive, three positive and all positive. All the patterns
belonging to each condition are shown on the right side
of Figure 4. The green edge vertices form the cracks
and the green line segments inside each crack show the
triangulation that is used to fill it. However, some of
the edge vertices do not generate a crack like the part
shown in red circle in Figure 4. That is because the two
edge vertices generated from two sides coincide with
each other as shown in Figure 3.
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Figure 3: Example showing that no crack occurs on
common face between two cells of different levels.
Here, points A and B are generated coincidently on
each side of the common face, resulting in no cracks
being formed.

2.2 Analyzing Patterns of Group 2
As analyzed above, we can obtain all the possible crack
patterns of Group 2 similarly. However, for Group 2
where two inner edge vertices exist, the topology of
the two points has two conditions which are shown in
Figure 5 and Figure 6, respectively. For some patterns
generated from templates containing ambiguously tes-
sellated faces where four edge vertices exist as enclosed
by the red ellipse in Figure 5, we use thick blue lines
to separate all the possible patterns generated from the
same template.

In our crack filling approach, we just triangulate the
cracks to fill them. For most of the patterns, this method

does not pose any problem. However, for very few pat-
terns as those enclosed by the purple ellipse in Figure 5,
the crack cannot be perfectly triangulated because there
exists a crack vertex (vertex p) that does not belong to
the edge vertices. An accurate way of dealing with this
problem is to calculate the exact coordinate of P by cal-
culating the intersection point of line segments AB and
CD and triangulating the corresponding crack part us-
ing triangles ACP and BDP. But we choose a simple
way in our implementation by just stretching the crack
part to the existing edge vertices. In our method, we re-
place triangles APC and BPD with triangles ABC and
BCD. This method is simple compared to the accurate
one but it may cause topology errors by generating non-
manifold surfaces, for triangle BCP may be perpendic-
ular to the resulting surface mesh. But in our implemen-
tation, this result is good enough to neglect that artifact.

2.3 Patterns of the Other Groups
The patterns of the other three groups are shown in Fig-
ure 7, Figure 8, and Figure 9.
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Figure 4: All crack patterns of Group 1.
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Figure 5: All crack patterns of Group 2: First condition.
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Figure 6: All crack patterns of Group 2: Second condition.
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Figure 7: All crack patterns of Group 3.
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Figure 8: All crack patterns of Group 4.
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Figure 9: All crack patterns of Group 5.


