
MeshToSS: Converting Subdivision Surfaces from Dense Meshes

Takashi Kanai

Keio University, Faculty of Environmental Information
Endo 5322, Fujisawa-city, Kanagawa, 252-8520, Japan

Email: kanai@sfc.keio.ac.jp

Software Web page:
http://graphics.sfc.keio.ac.jp/MeshToSS/

Abstract

The theoretical aspects are discussed of our de-
veloped software, MeshToSS, for the conversion
to Loop subdivision surfaces of dense triangular
meshes. This software generates subdivision sur-
faces that approximate to their original mesh. The
output is either a control mesh or its subdivided
mesh applied to the Loop subdivision scheme. Our
simple approach for the conversion is based on a
well-known mesh simplification technique that ap-
plies a sequence of edge collapse operations. We
show that this enables fast and flexible conversion
to subdivision surfaces.

1 Introduction

An unstructured triangular mesh is the most com-
mon surface representation and is widely used in
computer graphics (CG). 3D objects which have
both arbitrary connectivity and complicated geom-
etry can be defined by using meshes. Such meshes
can be obtained by the reconstruction of range im-
ages, although it is quite difficult for the user to han-
dle these meshes.

On the other hand, a subdivision surface [12] is
one of the surface representations that can define a
smooth surface by repeatedly and infinitely subdi-
viding a coarse control mesh according to a certain
rule. In particular, a network of C1 continuous tri-
angular surfaces with arbitrary connectivity can be
defined by the Loop subdivision scheme [8]. The
control mesh of a Loop surface is defined much like
a triangular mesh, and then the utilization of various
algorithms for triangular meshes (e.g., compression
and transmission) is possible.

There are some approaches for converting subdi-
vision surfaces from a range of points or polygonal
meshes. Hoppe et al. [5] have proposed an auto-
matic fitting method to subdivision surfaces from a
range of points. This approach is, however, based
on global non-linear optimization requiring consid-
erable computing time. Suzuki et al. [10] have pro-
posed a rapid local fitting scheme to generate sub-
division surfaces, although users have to manually
input a coarse control mesh.

This paper introduces an algorithm implemented
in our MeshToSS software for converting polyg-
onal meshes to Loop subdivision surfaces. This
software reads VRML polygon data as the input,
converts to a subdivision surface, and then gener-
ates the control mesh of a surface or a semi-regular
structured mesh that is regularly subdivided by a 4-
to-1 split scheme.

Our approach for converting Loop surfaces is an
extension of the mesh simplification algorithm us-
ing the QEM (quadric error metric) method pro-
posed by Garland and Heckbert [3] and incorpo-
rates some significant properties from the original
scheme. Firstly, it can preserve shape features such
as boundaries, creases and so on by overlaying the
edges of a control mesh along these features.1 Sec-
ondly, the computation time is much faster than that
of other optimization-based conversion approaches,
because the energy minimization is simplified by
using QEM. Thirdly, we can construct a contin-
uous multiresolution representation of subdivision
surfaces as a progressive mesh [4] by using our
scheme. This enables more flexible resolution con-
trol of the subdivision surfaces. We can obtain from

1Our approach does not deal with piecewise smooth subdivi-
sion surfaces, so creases are converted to shapes with small round-
ing.

VMV 2001 Stuttgart, Germany, November 21–23, 2001

mailto:kanai@sfc.keio.ac.jp
http://graphics.sfc.keio.ac.jp/MeshToSS/

Figure 1: Loop subdivision surface.

our software a Loop surface with arbitrary resolu-
tion according to the number of vertices or to an
approximation error specified by the user.

2 Basic Setup

We describe in this section the Loop subdivision
scheme and QEM-based mesh simplification that
are used in our software.

2.1 Loop Subdivision Scheme

We explain here an overview of the Loop subdivi-
sion scheme [8] to show some basic features of sub-
division surfaces. In the scheme of a subdivision
surface, repeatedly and infinitely applying subdivi-
sion steps defines a smooth surface. Each subdivi-
sion step generally consists of two sub-steps called
splitting and positioning.

In the splitting step, the Loop subdivision scheme
uses a 4-to-1 split. A vertex is inserted in each edge
to generate two sub-edges. Each triangular face is
subdivided into four sub-faces. The inserted ver-
tex and an original vertex are respectively called the
odd vertex and even vertex. In the positioning step,
each new vertex position is calculated by a linear
combination of its 1-ring neighbor vertices.

An infinitely subdivided triangular mesh con-
verges to a smooth surface (Figure 1). A Loop
surface has the generalized form of a three-
dimensional box spline. Loop [8] has shown that
the limit surface is C2-continuous, except at ex-
traordinary vertices, where it is C1-continuous.

2.2 QEM-based Mesh Simplification

We explain here an overview of the original QEM-
based mesh simplification proposed by Garland and
Heckbert [3].

For each face f of mesh M , quadric function
Qf (v) is defined by Qf (v) = (nT v + d)

2
as the

square of the distance from the point v to a plane

v1

v2

e1

e2

e
v

e

Figure 2: Edge collapse operation {v1, v2} → v̄.

including face f , where n denotes the normal vec-
tor of f . For each vertex v of M , a quadric function
is defined as follows:

Qv(v) =
∑
f�v

area(f) · Qf (v)

= vTAv + 2bT v + c, (1)

where A,b and c respectively denote a 3 × 3 sym-
metric matrix, a column vector and a scalar, and
area(f) denotes the area of triangular face f . The
reason for adopting a weighted sum using area(f)
is so that Qv depends on the size of the triangu-
lar face (see [2] for more details). Consequently,
6 + 3 + 1 = 10 floating point values consisting of
Qv = (A,b, c) are stored in each vertex v. Note
that Qv(v) = 0 at the beginning of the algorithm.

The algorithm applies an edge collapse operation
{v1, v2} → v̄ (Figure 2) to simplify M . In this
operation for edge e, we calculate position vmin of
vertex v̄ that minimizes the sum of QEMs of the
two end vertices, Qv̄ = Qv1 + Qv2 . This is the
position where gradient ∇Qv̄ is zero, and vmin can
be found by solving the following linear equation:

Avmin = −b. (2)

The cost of each edge e is defined by Qv̄(vmin).
We calculate the costs for all edges in advance at
the beginning of the algorithm. Edge collapse oper-
ations are processed in order of the edges with the
lowest to highest cost. The costs of neighbor edges
are updated after each operation.

3 Approximating Subdivision Sur-
faces

In this section, we discuss the method for directly
calculating the control mesh of a Loop surface from

666

(a) (b)

Figure 3: QEM visualization: (a) QEM manage-
ment by vertices only, (b) QEM management by
vertices and edges.

a mesh by using the QEM-based mesh simplifica-
tion. The principle is to define an evaluation func-
tion based on using subdivided vertices by the Loop
subdivision scheme, and not the vertices of the con-
trol mesh themselves.

3.1 Vertex-Edge QEM Management

QEMs are stored only by vertices in the original
mesh simplification algorithm [3]. To find an op-
timized vertex position in each edge collapse oper-
ation, only a new vertex is used to evaluate a QEM.
For our purpose, we need to use a new vertex and its
neighbor vertices to establish a more accurate and
sophisticated evaluation. We therefore established
another QEM management method to do this.

In both vertices and edges QEMs are stored. At
the beginning of the algorithm, each edge e stores
the following QEM (called an edge QEM):

Qe = area(fl) · Qfl + area(fr) · Qfr , (3)

where fl and fr denote faces neighboring e. If e is a
boundary edge, only either element of Equation (3)
is defined. All elements of a QEM in each vertex
(called a vertex QEM) are set to zero. In each edge
collapse operation, the QEM of deleted edge e is in-
tegrated in that of new vertex v̄. To generalize this,
QEMs are updated at each edge collapse operation
as follows (see Figure 2 for the notation):{

Qv̄ = Qē + Qv1 + Qv2

Qē = Qe1 + Qe2 (4)

Figure 3 demonstrates the visualization of QEMs
according to the method in [3]. The iso-surface of

a QEM can be represented by an ellipsoid. Fig-
ure 3(a) denotes QEMs managed only by vertices.
QEMs are sparsely situated on the control mesh if
the number of vertices is too few. Figure 3(b) de-
notes QEMs managed by both vertices and edges.
A light-colored ellipsoid is a vertex QEM, and a
dark-colored ellipsoid is an edge QEM. It can been
seen that the ellipsoids are distributed more densely,
even if the number of vertices of the control mesh
is the same as that shown in Figure 3(a). The size
of an ellipsoid indicates the scale of floating point
values of a QEM. A vertex QEM tends to be larger
than an edge QEM in a simplified mesh, because
QEMs are more accumulated at vertices as simplifi-
cation proceeds by our vertex-edge QEM manage-
ment method.

3.2 Evaluation Function Using Subdivi-
sion Points

Our evaluation function for optimizing a vertex po-
sition is defined by using points on the Loop surface
and not using vertices of the control mesh. We use
vertices of a mesh subdivided twice from the control
mesh, instead of using exact points (limit points) on
the Loop surface. This is done because the calcula-
tion is simpler, both results not being any different
in our experiment. A twice-subdivided mesh by the
Loop scheme is similar to its limit surface in most
cases. The calculation of an arbitrary point on a
Loop surface is possible, however, at least a twice-
subdivided mesh being needed for this (see [9] for
more details).

We will next explain the notation of neighboring
vertices centered at vertex v0 of the control mesh
after an edge collapse operation (Figure 4). A su-
perscript number indicates the number of subdivi-
sion; for example, v(1) is a vertex subdivided once.
vj (j = 1 . . . κ0) shows a 1-ring neighbor vertex
of the control mesh, where κ0 denotes the valence
of v0. v

(1)
0j shows an odd vertex that has been sub-

divided once and generated at the midpoint of an
edge.

Our evaluation function can be defined by the fol-
lowing equation:

Q(v0) = Qv0(v
(2)
0) +

κ0∑
j

Qej (v
(2)
0j), (5)

where v
(2)
0 denotes an even vertex subdividing v0

twice, and v
(2)
0j denotes an even vertex subdivid-

666

v0

v01
1

v02
1

v03
1

v04
1 v05

1

v51
1

v12
1

v23
1

v34
1

v45
1

v1

v2

v3

v4

v5

v051

v012

v023

v034

v045

Figure 4: Neigboring vertices centered at vertex v0.

ing odd vertex v
(1)
0j once more. The first element

of the right term in Equation (5) is for shape eval-
uation around vertex v

(2)
0 , for which vertex QEM

Qv0 = (A0,b0, c0) of vertex v0 is used. The sec-
ond element is for shape evaluation around edge
ej neighboring v0, for which edge QEM Qej =
(A0j,b0j , c0j) of edge ej is used.

We regard v0 as the only variable for calculating
the optimized vertex position so that we need to find
v0 minimizing Q(v0). As discussed in Section 2.1,
v

(2)
0 and v

(2)
0j can each be represented as a linear

function of v0, so they are rewritten as follows:

v
(2)
0 = α0v0 + e0,

v
(2)
0j = α0jv0 + e0j,

(6)

where α0 and α0j denote the coefficients of element
v0, e0 and e0j denote vectors summed all other ver-
tex positions and coefficients. Combining Equation
(5) and (6):

Q(v0)

= vT
0 ((α0)

2A0 +

κ0∑
j

(α0j)
2A0j)v0

+ 2(α0(A0e0 + b0)

+

κ0∑
j

α0j(A0je0j + b0j))
T v0

+ eT
0 A0e0 + 2b0)

T e0 + c0

+

κ0∑
j

(eT
0jA0je0j + 2bT

0je0j + c0j)

= vT
0 Āv0 + 2b̄T v0 + c̄. (7)

Q(v0) is also a quadric function of v0. Vertex po-
sition vmin

0 minimizing Q can be found by solving
the following 3 × 3 linear system:

Āvmin
0 = −b̄. (8)

3.3 Algorithm

We next describe our algorithm for converting a
Loop subdivision surface from mesh M . This is a
natural extension of the original mesh simplification
algorithm in [3].

1. Calculate 10 floating point values for each
edge QEM and store the results in that edge.
All elements of each vertex QEM are set to
zero.

2. For each edge e, compute vmin
0 and cost

Q(vmin
0). This is done by calculating Ā, b̄

and c̄, and by solving Equation (8). e is in-
serted in a heap, the top of the heap being an
edge of the minimum cost.

3. For e at the top of the heap, run the edge col-
lapse operation (v1,v2) → v̄ (= vmin

0) and
delete e from the heap. Update QEMs accord-
ing to the rule in Equation (4) and costs of all
edges including v̄.

4. The algorithm terminates if the number of
vertices or an approximation error (we use
here the square root of Q(v0) for simplicity)
reaches a prescribed value.

One of the differences between the original scheme
and ours is that our algorithm needs to calculate
Ā, b̄ and c̄ at each edge collapse stage. This leads to
extra computation time. The original scheme does
not have to do this because a vertex QEM can be
directly used for the evaluation.

The other difference is in space efficiency; our al-
gorithm requires a roughly four times larger mem-
ory space because QEMs must be stored in both ver-
tices and edges. Furthermore, our algorithm can-
not use a memory-efficient simplification scheme
like the “memoryless simplification” proposed by
Lindstrom and Turk [7] that does not need to store
QEM explicitly, because it is computed on the fly
with simplification. The mesh processed with our
algorithm is the control mesh of a subdivision sur-
face, and is not similar to its original mesh. Con-
sequently, our method cannot use a simplified mesh
directly for evaluating the shape.

666

v0

v1

v2

e1

e2

v0

(a) (b)

Figure 5: Boundary case.

3.4 Evaluation Function of the Boundary

We will discuss the case of a mesh with boundary
edges. An additional QEM is stored in boundary
edge e, this being the same function as that de-
fined in [3]. Assume a plane perpendicular to a face
neighboring a boundary edge such that (n×l)T v+
d′ = 0, where n denotes the normal vector of the
face. We define an additional QEM as the square of
the distance between a vertex and the plane:

Q′ex(v) = γ((n × l)T v + d′)2 (x = 1, 2) (9)

where l denotes the directional vector of e, and γ
denotes a scalar quantity as a penalty. We set γ =
1, 000.0.

We will consider two cases for the calculation of
an evaluation function near the boundaries as shown
in Figure 5. The bold lines in Figure 5 indicate
boundary edges. One case is for v0 being a bound-
ary vertex (Figure 5(a)), for which we define the
evaluation function as follows:

Q(v0) = Qv0(v
(2)
0)

+ Qe1(v
(2)
01) + Qe2(v

(2)
02)

+ Q′e1(v
(2)
0) + Q′e2(v

(2)
0). (10)

The first element evaluates twice subdivided vertex
v

(2)
0 by using the vertex QEM of v0. The second

and third elements evaluate even vertices v
(2)
01 and

v
(2)
02 by using edge QEMs of boundary edges e1 and

e2, respectively. Boundary subdivision rules are
adopted for these vertices. Since v

(2)
0 ,v

(2)
01 and v

(2)
02

are also represented as a linear function of v0 as
shown in Equation (6), an optimized position min-
imizing Q can be found by solving the linear sys-
tem. We can also consider in Equation (10) that
internal edges neighboring v0 should be included
for the evaluation of Q(v0). We found, however, in
our experiments that it was meaningless to use these

0.01

0.1

1

0 2000 4000 6000 8000 10000

M
ea

n
S

qu
ar

e
E

rr
or

 (
%

)

number of vertices

v-qem
ve-qem

Figure 6: Mean square errors plotted between the
subdivision surfaces and original mesh. The hor-
izontal axis denotes the number of vertices in the
control mesh.

elements, because the optimized position of v0 is
strongly pulled toward the boundaries by penalty el-
ements Q′ex .

The other case is for the edge between two 1-
ring neighbor vertices of v0 being a boundary edge
as shown in Figure 5(b). In this case, we basically
use the evaluation function of Equation (5) for opti-
mization, provided that boundary subdivision rules
are adopted for the boundary vertices.

4 Experimental Results

Figure 9 demonstrates the results of converting
Loop subdivision surfaces for the Stanford bunny
model (35,947 vertices and 69,451 faces). We
tested here two QEM management schemes: Case
1 involves vertex management of the original QEM
scheme (v-qem) shown in Figure 9 (d)-(e), a sim-
plified evaluation function in Equation (5) consider-
ing only the first element; Case 2 is the vertex-edge
QEM management method proposed in Section 3.1
(ve-qem) and shown in Figure 9 (f)-(g). As can be
seen from the results presented in Figure 9, subdi-
vision surfaces converted by using both Case 1 and
Case 2 principles preserve features such as bumps
and creases. This indicates that our approach inher-
its the good aspects of the original QEM scheme. In
the comparison between control meshes with 1000
vertices, we cannot recognize any visual difference
between them; for 300 vertices, however, slight dif-
ferences are apparent around the ears and nose.

A more intelligible comparison between Case 1
and Case 2 is given in Figure 6 which shows a graph

666

type qem cont. mesh sub. mesh time
manag. v f f (sec.)

simp. v-qem 1,000 1,907 - 50.4
simp. v-qem 300 571 - 51.6
sub. v-qem 1,000 1,908 30,528 58.3
sub. v-qem 300 570 9,120 59.2
sub. ve-qem 1,000 1,949 31,184 137.8
sub. ve-qem 300 582 9,312 139.3

Table 1: Statistical summary of the examples in Fig-
ure 9. From left to right: conversion type (simp. or
sub.), QEM management type (v-qem or ve-qem),
number of vertices and faces in the control mesh,
the number of faces in the twice subdivided mesh,
and the computation time.

of the relationship between the number of vertices
of the control meshes and the approximation errors.
The horizontal axis of this graph shows the num-
ber of vertices in the control mesh. The vertical
axis shows the percentage on a logarithmic scale of
the mean square error (L2−norm) over the diagonal
length of the bounding box of a mesh. These errors
between the subdivision surface (actually the mesh
subidivided twice) and its original mesh were mea-
sured with an IRI-CNR Metro tool [1]. It can be
seen that both graphs progressively decrease as the
number of vertices increases. This is another char-
acteristic of the QEM-based simplification scheme.
We can use this property as a criterion for the er-
ror control of subdivision surfaces, making it pos-
sible to create a control mesh within an approxima-
tion error determined by the user. Comparing the
graphs for Case 1 and Case 2, the subdivision sur-
faces from Case 2 generally have lower approxima-
tion errors than those from Case 1. This proves that
our vertex-edge QEM management scheme pro-
duces more tightly fitted subdivision surfaces, ex-
cept when the number of vertices is extremely low
(< 100).

Table 1 summarizes the number of elements and
the computation time for the examples in Figure
9. The computation times were collected in a stan-
dard AT-compatible PC environment (Pentium III
500MHz CPU, 256MB memory). We also show
the results of the mesh simplification (simp.) in our
implementation for comparison. The computation
time for Case 2 is twice as long as that for a mesh
simplification, while the time for Case 1 is almost
the same. This is mainly due to the larger numbers
of vertices needed to compute an optimized vertex.

Figure 10 demonstrates other results, especially

C 4 C 100 C 1000 M

S 4 S 100 S 1000

Figure 7: Progressive subdivision surface represen-
taion.

for regular meshes (sphere, 14,582 vertices; knots,
23,232 vertices) created by a standard CAD model-
ing tool. These results show that we can obtain a
well-defined subdivision surface that approximates
to the original mesh.

5 Software Information

The MeshToSS software reads a mesh in the
VRML format. The software outputs not only the
control mesh of a Loop surface, but also the subdi-
vided mesh. The output data format of the control
mesh is also VRML, with a simple extension in the
comment region so that it can be distinguished from
an ordinary mesh.

The number of vertices and the approximation er-
ror can be specified to obtain a control mesh with
the desired level of detail. These parameters can be
specified in a dialog box. We use the percentage of
the square of the evaluation function value over the
size of the mesh as the parameter for the approxi-
mation error.

This free software, including source codes, Win-
dows 98/NT/2000 executive binaries and documen-
tations can be downloaded from the Web page. It
is also possible to compile source codes on a UNIX
platform such as Linux.

6 Summary and Discussion

We have presented a new algorithm for converting
Loop subdivision surfaces from polygonal meshes
and have introduced our MeshToSS software. We
have shown that our conversion algorithm is fast,
feature preserving, and flexible for LOD control.
This software can be freely downloaded from the
Web site.

666

Progressive meshes
(300 vertices)

Progressive control meshes
(300 vertices)

Original
(35947 vertices)

Figure 8: Application to progressive transmission.

One direction for future work is an extension of
our conversion approach; for example, an applica-
tion to a mesh with attributes such as color and tex-
ture coordinates, and to piecewise smooth subdivi-
sion surfaces [5] can be considered. A fitting ap-
proach to other non-triangular subdivision surfaces
with our algorithm can be found in [11].

Another direction is its use for Web applications.
Our approach is based on applying a sequence of
edge collapse operations. Consequently, we can
construct the representation of a new shape simi-
lar to that with Progressive Mesh (PM) [4]. As
shown in Figure 7, we can traverse control meshes
with a tree-structured level of detail hierarchy by
using edge collapse operations and their inverse op-
erations called vertex split. A subdivision surface,
Sx, is obtained from each control mesh, Cx. Fur-
thermore, we can restore the original mesh, M , by
sequentially applying vertex split operations from a
coarse control mesh.

Progressive transmission [6] is useful for the dis-
play of 3D models by a client/server-based net-
working system. The server first sends a coarse
base mesh and then sequences of detail information
one by one. The client receives these data and dis-
plays intermediate meshes while restoring an orig-
inal mesh. We consider that our progressive repre-
sentation can be used for the progressive transmis-
sion of meshes. As shown in Figure 8, the server
sends the most coarse control mesh, and a sequence
of records for vertex split operations in order. The
client receives the base control mesh, constructs a
subdivision surface, and displays the surface while
restoring an original mesh. An intermediate subdi-
vision surface is an approximation of the original
mesh. When the transmission has been completed,
the original mesh can be displayed. We imagine that

more visually understandable data can be obtained,
especially at the coarse level, compared to the orig-
inal PM representation.

Acknowledgement

Development of this software was funded by RISE
(Research Institute of Software Engineering) under
support from IPA (Information-technology Promo-
tion Agency). The “bunny” mesh is from Stanford
University, the “horse” mesh and the “venus” mesh
are from Cyberware Inc., and the “knot” mesh is
from Washington University. We thank the review-
ers for useful comments.

References
[1] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measur-

ing error on simplified surfaces. Computer Graphics Forum,
17(2):167–174, 1998.

[2] M. Garland. Quadric-Based Polygonal Surface Simplifica-
tion. PhD thesis, Carnegie Mellon University, School of
Computer Science, 1999.

[3] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. In Computer Graphics (Proc. SIG-
GRAPH 97), pages 209–216. ACM Press, New York, 1997.

[4] H. Hoppe. Progressive meshes. In Computer Graphics
(Proc. SIGGRAPH 96), pages 99–108. ACM Press, New
York, 1996.

[5] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin,
J. McDonald, J. Schweitzer, and W. Stuetzle. Piecewise
smooth surface reconstruction. In Computer Graphics (Proc.
SIGGRAPH 94), pages 295–302. ACM Press, New York,
1994.

[6] U. Labsik, L. P. Kobbelt, R. Schneider, and H.-P. Seidel.
Progressive transmission of subdivision surfaces. Compu-
tational Geometry, 15(1–3):25–39, 2000.

[7] P. Lindstrom and G. Turk. Evaluation of memoryless simpli-
fication. IEEE Trans. Visualization and Computer Graphics,
5(2):98–115, 1999.

[8] C. Loop. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Department of Mathe-
matics, 1987.

[9] J. Stam. Evaluation of Loop subdivision surfaces. In SIG-
GRAPH 99 Course Notes No.37 "Subdivision for Modeling
and Animation". ACM SIGGRAPH, 1999.

[10] H. Suzuki, S. Takeuchi, T. Kanai, and F. Kimura. Subdivi-
sion surface fitting to a range of points. In Proc. 7th Pacific
Graphics International Conference (Pacific Graphics ’99),
pages 158–167. IEEE CS Press, Los Alamitos, CA, 1999.

[11] S. Takeuchi, T. Kanai, H. Suzuki, K. Shimada, and
F. Kimura. Subdivision surface fitting with QEM-based
mesh simplification and reconstruction of approximated B-
spline surfaces. In Proc. 8th Pacific Graphics International
Conference (Pacific Graphics 2000), pages 202–212. IEEE
CS Press, Los Alamitos, CA, 2000.

[12] D. Zorin. Survey of subdivision schemes. In SIGGRAPH
2000 Course Notes No.23 "Subdivision for Modeling and
Animation". ACM SIGGRAPH, 2000.

666

(a) (b) (c)

(d) (e)

(f) (g)

Figure 9: Conversion results for subdivision surfaces of the “bunny” model. (a) Original mesh. (b)-(c)
Simplified meshes ((b) 1,000 vertices, (c) 300 vertices). (d)-(e) Results by vertex QEM management (Case
1) ((d) 1,000 vertices, (e) 300 vertices). (f)-(g) Results by vertex-edge QEM management (Case 2) ((f)
1,000 vertices, (g) 300 vertices). For (d)-(g): left: control mesh, right: subdivision surface.

M C1000 S1000 C300 S300

Figure 10: Conversion results for meshes with regular connectivities. Upper: the “sphere” model (14,582
vertices). Bottom: the “knot” model (23,232 vertices).

666

	1 Introduction
	2 Basic Setup
	2.1 Loop Subdivision Scheme
	2.2 QEM-based Mesh Simplification

	3 Approximating Subdivision Surfaces
	3.1 Vertex-Edge QEM Management
	3.2 Evaluation Function Using Subdivision Points
	3.3 Algorithm
	3.4 Evaluation Function of the Boundary

	4 Experimental Results
	5 Software Information
	6 Summary and Discussion

