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Abstract

This paper presents a method designed to finely approximate ground surfaces from UAV photogrammetric point clouds by

relying on statistical filters to separate vegetation from potential ground points, dividing the whole plot in similar complexity

sub-plots through an optimized tilling, and filling holes by blending multiple local approximations through the partition of unity

principle. Experiments on very different terrain topology show that our approach leads to significant improvement over the

state-of-the-art method.

CCS Concepts

• Computing methodologies → Point-based models; Mesh models; Modeling methodologies;

1. Introduction

Digital Terrain Model (DTM) acquisition and extraction is a key is-
sue in a large field of applications ranging from geosciences to en-
vironmental science, water management, archaeology, but also civil
engineering and forest management. Manual data collection meth-
ods by surveyors is a repetitive and onerous task which, moreover
provides only sparse data. Therefore, laser scanners (or LiDAR)
have become a major tool in the last twenty years. Thanks to tech-
nological advances, airborne LiDAR has been first enriched by ter-
restrial LiDAR, and then, some ten years ago, by UAV (Unmanned
Aerial Vehicle) LiDAR. However, both terrestrial and aerial acqui-
sition campaigns entail costs ranging from 10 to 100ke while UAV
alternatives are sensibly cheaper. Therefore, such solutions remain
hardly available in many applications and contexts (such as emerg-
ing countries or small scale studies).

In this context, UAV photogrammetric data appear as a promis-
ing new low-cost alternative. However, despite their nice aspect,
data present serious shortcomings when it comes to capturing a 3D
scene. As illustrated in Figure 1, points are mostly “surface points”;
hence the cloud contains hardly any information below vegetation.
As a consequence, this context is a real challenge in terms of DTM
segmentation and reconstruction. In the present work, we propose a
method inspired by the work on terrestrial LiDAR data [MBK20].
Specifically, we introduce a novel segmentation algorithm to effi-
ciently separate the point clouds that make up the terrain surface
from vegetations, followed by an implicit surface reconstruction
optimized for such incomplete data. We also propose an optimal
tiling method so as to tightly fit the large region of terrains to im-
plicit surfaces with less artifacts.

The paper is organized as follows: in Section 2, we describe UAV
photogrammetric data and the corresponding state-of-art for DTM

extraction and reconstruction. In Section 3, we introduce our ap-
proach and Section 4 details its validation. In Section 5, we con-
clude on both the feasibility of DTM extraction from UAV pho-
togrammetric data and on our method.

2. Overview of data and methods

2.1. UAV photogrammetric data

Whereas LiDAR data characteristics are now well-known from the
computer science community as well as “end users” such as ecolo-
gists, geomaticians, archaeologists or geologists, UAV photogram-
metic data are, to the best of our knowledge, a new frontier still
largely unexplored. However, they offer a very interesting alter-
native to LiDAR data in terms of cost-benefit ratio. Despite their
outreach, LiDAR technologies (airborne, terrestrial and unmanned)
remain very costly. Airborne LiDAR acquisition campaigns pro-
vide point cloud covering hundreds to thousands of kilometers with
a resolution around 20 cm. Terrestrial LiDAR is both more local
(usually around 100m) and more precise (resolution is around 1 cm
at 10 m from the scanner). Lastly, UAV LiDAR provides an inter-
mediate solution with a resolution ranging from 2 to 5 centimeters
and plots covering up to some dozens of kilometers.

In this context, UAV photogrammetric data provide a new low-
cost alternative. However, data have very different characteristics.
Whereas their resolution remains low (between 5 and 10 centime-
ters), points are mostly “surface” points, as the passive photo-
graphic sensor does not have the penetrating capacity of the Li-
DAR. Hence, data can hardly be obtained below the vegetation.
Figure 1 shows an example of UAV photogrammetric data and two
closer views: one on an isolated tree and the other on dense vege-
tation.
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Figure 1: UAV photogrammetric data: (up) a general view on man-

galam data (South India) - (down) closer views on (left) area (1),

(right) area (2).

Therefore, whereas the resolution of data is relatively similar to
UAV LiDAR data, ground occlusions are extremely large in the
presence of vegetation. The objective of this paper is to prove that
in this challenging context, it is still possible to extract a digital
terrain model (DTM) despite these occlusions.

Another characteristic of UAV photogrammetric data is the pres-
ence of low noise points located under the ground surface. The first
row of Figure 3 illustrates this phenomenon which originates in the
matching of original 2D images.

To validate our approach, we tested it on 10 very different data
sets which are further described in Section 4.1.

2.2. Related work

The unstructured, non-planar nature of point clouds makes implicit
surfaces a key modeling tool [MBV18]. Moreover, such models
structurally smooth the noise by approximating the input points
and are tolerant to in-homogeneity and limited occlusion. In the
case of DTM extraction from terrestrial LiDAR data, the combi-
nation of local implicit patches blended together to give a global
surface model delivers sharp elevation models [MBV17, MBK20].
While LiDAR stands as the most accurate solution to retrieve a par-
cel ground surface, UAV photogrammetric remote sensing is a in-
teresting low-cost alternative. Compared to traditional aircraft usu-
ally used during airborne survey, UAV have the ability to acquire
accurate data in critical situations where immediate access to 3D
geo-information is crucial [RBN∗11, GH15]. Indeed, they can be

deployed promptly on site and they take-off and land vertically,
thus no runway area is required. Moreover, the use of simple dig-
ital camera instead of costly LiDAR scanner reduces considerably
the survey fare. Indeed, being more accessible, this technology can
substitute LiDAR sensors on projects that does not require millime-
ter accuracy [SBP∗18, CLF∗19, TPDF14]. The extraction of DTM
on rocky terrain, without vegetation nor building have been ex-
plored by Uysal et al. [UTP15]. However, to the best of our knowl-
edge, the extraction of DTM on landscapes presenting trees and
buildings has been explored only by Polat et al. [PU17], who apply
the cloth-simulation filtering (CSF) [ZQW∗16].

3. Approximation of the terrain surface

As illustrated in Figure 2, our DTM extraction is based on three
steps. From the raw 3D point cloud, we first select the ground
points. Then we divide the ground points extent along a 2D grid
to simplify the local approximation and reduce potential side ef-
fects. Finally, we estimate the terrain model on the whole extent
as an implicit surface and extract its zero level-set. The following
sub-sections describe those three steps.

3.1. Selection of the ground points

As pointed out in the previous section, the first step of DTM recon-
struction consists in segmenting data to extract ground points. In
order to do so, we designed a sequence of four filters represented
in Figure 3.

To detect ground points, we rely on the following observation.
First, the terrain is clearly described by points of lower elevation.
However, as pointed out earlier, point clouds generated from im-
agery by photogrammetry software happen to produce low noise
points. Therefore, we plunge data into a regular 2D grid with cells
of size 1 m. But instead of simply selecting points of lower eleva-
tion, we apply the following rule: when cells contain more than 20
points, we keep the point whose elevation is closer to the nth per-
centile in elevation and the point of lower elevation otherwise. In
our experiment n = 20 gives the best result.

Unfortunately, this is not sufficient to select only ground points.
First, it is well known that such an approach fails in areas where
the terrain is occluded. On Figure 1, it is clear that a cell located in-
side the occlusion will provide a point in the crown. Moreover, this
absence or lack of terrain points also shifts the elevation distribu-
tion and hence, low noise points may have been selected (usually as
isolated points in the neighborhood of occlusions). Therefore, our
second step consists in removing isolated points by a simple anal-
ysis of the 27-neighborhood of each cell of the regular grid. We
delete points having less than nneigh neighbors in this sense (exper-
imentally, nneigh = 6 gives good results).

Then deforestation consists in removing vegetation points. This
problem has been largely studied for LiDAR data. Our data is now
sparse and quite similar to airborne LiDAR data. We thus decided
to use the approach of [ILS∗06] (inspired from [Axe00]), which
triangulates data and then iteratively analyzes steep slope changes.
We used the implementation provided by Lastool software [Ise] as
the module lasground.
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Figure 2: General overview of our DTM reconstruction method.

On the second row,the green cells of the 2D grid are considered

for the reconstruction whereas the red ones are discarded. For vi-

sualization purpose, the point clouds on the fourth row have been

decimated, and only half of the point cloud of the last row is plotted.

Figure 3: Filtering of ground points: 1 - Detection of lower points;

2 - Removal of isolated noise points; 3 - Deforestation; 4 - Den-

sity filtering. The noise points coming from photogrammetric photo

mismatches are circled in red. The vegetation points remaining af-

ter deforestation are circled in blue.

However, some vegetation points remain after the previous de-
forestation step. It is often the case while dealing with forested ar-
eas, where the previous step filters out the points corresponding to
the highest trees but leaves the ones corresponding to the lowest
vegetation. Under the assumption that, in photogrammetric point
clouds, ground points are distributed in clusters, we add a filter
based on the local density of points. Let P = {pi ; i = 1 . . .N} de-
note the point cloud extracted by deforestation. We assign a weight
di at each point pi given by :

di = 1− 1
maxd

∑
p j∈PK

j

‖pi −p j‖ (1)

where P
K
j is the K-neighborhood of pi (from our experiments

K = 20 appears as a good choice), and maxd is defined as:

maxd = max
pi∈P



 ∑
p j∈PK

j

‖pi −p j‖



 (2)

Filtering the points of lower weights allows keeping a set of
ground points which we rely on.

3.2. Optimized tiling

As illustrated in Figure 2, to cope with the average slope present in
some drone data-sets, we define, as a preliminary step, a local coor-
dinate system lined up with this slope. In practice, an approximate
tangent plane is computed using least square fitting. Let (u,v,w)
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denote a local orthonormal coordinate system such that the direc-
tion w is orthogonal to the fitting plane. The rotation induces by
the transformation of the points coordinate in (u,v,w) and also the
translation induced by the map projection are stored in a 4×4 ma-
trix M. Our algorithm performs every operations in the coordinate
system (u,v,w), then project back the results into the initial map
projection by applying the transformation M−1.

In this local frame, terrain reconstruction is done based on the
work [MBK20], developed for terrestrial LiDAR data. This al-
gorithm builds upon a quad-tree division of space to control the
reconstruction process according to the local point density. Ter-
rain is then modeled as an implicit function obtained from local
quadratic approximations attached to quad-tree leaves, and merged
using compactly supported partitions of unity. The support of merg-
ing functions is of course proportional to the size of leaves.

Therefore, while quad-tree subdivision guides the multi-scale re-
construction of the surface, it can also lead to surface model arti-
facts depending on the distribution of points near the boundary of
the bounding box. Indeed, large areas without points near the cor-
ners tend to block the subdivision of the quad-tree, thus producing
large quad-tree cells, as illustrated on Figure 4, and hence large
supports for corresponding partitions of unity, which screen the re-
construction of neighboring cells.

To cope with this issue, and also because the photogrammetric
point clouds usually cover larger areas than TLS, we first divide
the data-sets along with a regular 2D grid, which orientation is op-
timized according to the points distribution. We then run our DTM
algorithm in each cell of this grid.

Figure 4: Local quadratic approximations (left) without optimized

tilling and (right) with optimized tilling.

In our case, a 2D grid efficiently divides the point cloud if, in
each cell of the grid, either points cover the largest part of the cell
surface, or the cell is empty. To find such an optimal 2D grid, we
define an objective function f depending on x0 and y0 the origin
of the grid, θ its angle to the x-axis and its resolution lcell . Let Pi

denote the subset of points in the ith cell, and Si the surface of the
convex hull of Pi. We define gi, the contribution of the ith cell, as:

gi(x0,y0,θ, lcell) =

{

Si

lcell
2 , if Pi 6= empty

1, otherwise
(3)

The objective function f is defined as the average of the contribu-
tions of the N cells of the grid:

f (x0,y0,θ, lcell) =
1
N

×
N

∑
i=1

gi(x0,y0,θ, lcell) (4)

The 2D grid presenting the best characteristics for the division cor-
responds to the set of parameters (x0,y0,θ, lcell)max ∈ R

4 which
maximizes f .

As f is not derivable and not even convex, we approximate op-
timal parameters using a method inspired by simulated annealing.
We regularly distribute a set S of N initial grids in the 4D space
(x0,y0,θ, lcell) with a resolution v = (δx,δy,δθ,δl). Then, we ran-
domly draw small perturbations δv for each grid of S in order to
generate a total population of Ntest grids (actually we draw Ntest/N

perturbations by grid). We then keep grids of highest f value (actu-
ally the grids of p-percents highest values where p is a user-defined
parameter) and the process is then repeated over k iterations while
reducing the range of the variations δv: at the iteration k, those vari-

ations are bounded by ‖v‖
2k . The process stops when ‖v‖

2k < ε, where
ε is user-defined. The range of the variations reducing over each
iteration, the parameter ε actually controls the number of iteration,
thus the computation time. Experimentally, we noticed that an ini-
tial population of N = 10 grids, a test population of Ntest = 1000
grids and a filtering ratio p = 20% give the best results on all our
data sets.

Moreover, several geometric constraints reduce the research do-
main. The parameter lcell has its values bounded in the user-defined
interval [lmin, lmax]. The origin of the grid (x0,y0) lays in a tore
of thickness lcell ×

√
2 centered around the data-set. Moreover, to

guarantee that a grid of origin (x0,y0) cover all the points of the
data-set, the angle swept by each vector originating from (x0,y0)
and pointing towards each point of the data-set has to be inferior
to π

2 . In practice, those limitations of the research domain result in
reducing the computation time.

At the end of the maximization process, we keep the grid of best
score to guide the 2D division and further adaptive DTM recon-
struction in each cell, as presented on the second row of Figure 2.

3.3. Estimation of the digital terrain model

In each non empty cell of the optimal grid detailed in the previous
section, we run an instance of steps 3 and 4 of the terrain approxi-
mation method [MBK20] illustrated in figure 5. In practice, in each
cell of the grid, we proceed to a quad-tree division of 3D points.
Then, in each quadtree cell Oi, we locally approximate the points
by a quadric. This local approximation gi is done by weighted least
square minimization. Finally, we blend the set of all quadric ap-
proximations (that, functions attached to each quad-tree cell of each
non empty optimal grid cell) to produce a global implicit model f ,
computed as:

f (x) = ∑
ci∈C

gi(x) ·
Φσi(‖x− ci‖)

∑
c j∈C

Φσ j (‖x− c j‖)
(5)

where gi is the local approximation in the cell Oi and ci is the cen-
ter of Oi. More precisely we use compactly supported Wendland’s
RBF functions [Wen05] as a partition of unity to merge the local
implicit functions (issued from parametric patches) and compute
the global implicit model. The digital terrain model is then ex-
tracted by polygonization of the implicit surface using a marching
cube like algorithm.
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Input TLS point cloud Segmentation
vegetation/ground points

Quadtree division and local
approximations

First ground model from
partition of unity

Refined ground model after
convection process

Figure 5: Overview of the DTM reconstruction method [MBK20] (figure extracted from the paper). Only steps 3 and 4 are applied here.

4. Experiment and Validation

To estimate the quality of the terrain model produced by our
method, we processed several point clouds coming from landscapes
presenting a large range of topological characteristics (i.e. slope,
forest cover, building density). We gathered such data-sets from
different sources as described in Section 4.1. Then, Section 4.2
presents our approximation of the terrain models on those plots
and compares them to the model obtained with the state-of-the-art
method.

4.1. Data

To bring out our method ability to handle diverse topographic fea-
tures, we considered ten different photogrammetric point-clouds
displaying a wide variety of vegetation, hills, cliffs, and build-
ings. The data-sets "Residence" and "Mangalam" have been col-
lected in south-east India; they present a dense and low tropical for-
est coverage along with few disseminated buildings. The data-sets
"Sance", "Seneca", "Sheffield", "Wietrznia" and "Toledo" come
from [ope]; we used the Open Drone Map software to produce 3D
geo-referenced point clouds from the batches of open-source aerial
photos. "Seneca", "Sheffield" and "Toledo" present a relatively flat
terrain with sparse trees and buildings. "Sance" features a castle
ruin surrounded by a trench, on a mild terrain slope. "Wietrznia"
presents cliffs of a gorge that induce a strong terrain gradient. Fi-
nally, the data-sets "Cady", "Courreou" and "Rousson" have been
provided by [exa]. They have been collected in Southern France
and feature sloppy rocky ground with creek tracks. The plots char-
acteristics are summarized in Table 1.

4.2. Experiments and Discussions

To our knowledge, the approximation of the ground surface from
UAV photogrammetric data is still an open issue. [PU17] high-
lights that the method CSF [ZQW∗16], initially designed airborne
LiDAR point clouds, is also efficient to process photogrammetric
point-clouds. The validation that we follow compares our results
to the one obtained with CSF for each of the ten plots selected for
the validation. We used the CSF method implemented in the open-
source software CloudCompare [GM16]. Both the minimum quad-
tree division of the method [MBK20] and the CSF cloth resolution
were set to 1 m. In order to present the results in a clear and read-
able way, we project the resulting surfaces a geo referenced raster

Table 1: Details of the plot features (GPC stands for ground points

coverage). • reports the presence of the given feature, •• its signif-

icant presence.
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Sance • • •
Seneca • •
Cady • •
Courreou •• • • • • •
Mangalam •• •
Rousson •• •• ••
Residence •• • •
Sheffield • •• •
Wietrznia • •• •
Toledo • •

of 50 cm resolution. The rasters are hill shaded, colored according
to the altitude and contour lines were added. Tables 2 to 5 present
an overview of the point clouds on the first row, our terrain model
and the CSF terrain on the second and third row and the differ-
ence between both terrain surfaces on the fourth row. For the plots
"Courreou", "Sance", "Wietrznia" and "Mangalam", we extracted
transects of the initial point clouds, and both reconstructed models
produced by our method and CSF. Their comparisons are presented
in Figure 6. We also estimated the Hausdorff distance between the
models and the ground points of each plot, as seen in Table 6. This
last Table also presents the ground points coverage, computed as
the ratio of the areas of the convex-hulls defined by the ground
points and the initial point clouds.

Here, we discuss the results for each plot individually.

Courreou The complexity of this plot lies in its strong slope, its
creek bed in the lower half part, and in the road that snakes on the
upper side of the hill. Moreover, as it is highlighted in Figure 6,
the point cloud presents few photogrammetric errors due to pho-
tos mismatches that consist of points lying below the ground sur-
face. In this case, both methods propose a coherent surface fitting
the overall slope of the terrain. However, our result describes with
more sharpness the complete road layout and both creek mountain-
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Table 2: Digital Terrain Model for the plot "Courreou". The top

row displays a screenshot of the 3D point clouds. The second row

presents a shaded elevation map of our digital terrain model. The

third row presents a similar shaded elevation model given by the

CSF method. And the fourth row display the difference in between

both elevation map. The white box represents the transect presented

in Figure 6.

sides. It even reveals the terrace cultivation outlines in the center
of the plot. The difference between the two elevation model shows
that the CSF method fails to filter lower noise points induced by
photogrammetric errors; plus it fails to model the extreme lower
part of the plot.

Sance This point cloud describes a castle ruin surrounded by a wa-
ter pit. It also presents a patch of missing data in the center cor-
responding to a few trees. Overall, our method retrieves sharper
details of the ruins while the CSF method tends to over smooth the
side of the water pit; it appears clearly on the difference image and
Figure 6. Both methods propose a different way to fill the miss-
ing data patch. Even if it is difficult to draw out the results in such
a case, the analysis of the contour lines tends to favor our result
which displays smooth and continuous lines in this area.

Rousson This challenging data-set displays a hilly terrain covered
by trees. Our result presents several bulges corresponding to vege-
tation that has not been properly filtered out. On the contrary, CSF
result is smoother. However, the study of the difference map and the
contour lines underscores the tendency of CSF to over-smooth, in
the lower part of the plot and on the edges, which tends to increase
the distance to the ground points, as seen on the Table 6.

Wietrznia This plot characteristic is a deep canyon of a few dozen
meters surrounded by cliffs. Our result represents accurately the
cliffs wall, and models correctly the abrupt slope discontinuity. On
the other hand, the CSF method fails in modeling the cliff properly
and over-smooth the topology of the area. This difference appears
clearly in Figure 6. It should be noted that on this plot too, some
vegetation patches remained after the filtering; they produce few
bumps on the upper part of our terrain model.

Toledo The point cloud displays a relatively flat landscape with a
dense forest cover on the right part. As no ground points could be
retrieved under the forest cover, our method ignores that area and
proposes a terrain model on the remaining part of the plot. The CSF
method over-estimates the elevation of the terrain in the same area.

Seneca This plot consists of a relatively flat agricultural landscape
cut across by roads with following canals. Our result reproduces
faithfully the canals whereas CSF one tends to erode their sides.
Moreover, horizontal stripes appear on the CSF result as it fails to
reconstruct the border of the plot.

Residence Both methods produce a smooth terrain model on this
plot covered by forest. In both cases, trees and buildings are cor-
rectly filtered out. Nevertheless, CSF does not filter out photogram-
metric noise points; as highlighted by the two red patches on the left
side of the difference map.

Mangalam In the lower right corner, this plot displays a typical
south-Indian square water tank surrounded by mounds. It is crossed
horizontally by an ancient river bed. Brought out by the analysis of
the difference map, our method reproduces sharply those features
while CSF over-smooths the river bed and the mounds. Figure 6
highlights the efficient filtering of the vegetation in both case and
the over-smooth of the mounds for CSF.

Cady The sides of the river bed are over-smoothed by the CSF
method, in particular the upper left side of the river. The contour
lines of our model highlight the faithful reconstruction of the upper
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Table 3: Digital Terrain Model for the plots "Toledo" (left column), "Rousson" (middle column) and "Wietrznia" (right column). The top

row displays a screenshot of the 3D point clouds. The second row presents a shaded elevation map of our digital terrain model. The third

row presents a similar shaded elevation model given by the CSF method. And the fourth row display the difference in between both elevation

map. The white boxes represent the transects presented in Figure 6.
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Table 4: Digital Terrain Model for the plots "Sance" (left column), "Seneca" (middle column) and "Residence" (right column). The top row

displays a screenshot of the 3D point clouds. The second row presents a shaded elevation map of our digital terrain model. The third row

presents a similar shaded elevation model given by the CSF method. And the fourth row display the difference in between both elevation map.
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Table 5: Digital Terrain Model for the plots "Mangalam" (left column), "Cady" (middle column) and "Sheffield" (right column). The top row

displays a screenshot of the 3D point clouds. The second row presents a shaded elevation map of our digital terrain model. The third row

presents a similar shaded elevation model given by the CSF method. And the fourth row display the difference in between both elevation map.

The white box represents the transect presented in Figure 6.
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right bank whereas CSF flattens the areas in a continuous slope,
which is not coherent with the terrain topology.

Sheffield Both methods reconstruct sharply the topology of the
simple plot, in particular, the circular pit in the lower-left corner.

Table 6: Hausdorff distance from the terrain models to the ground

points. We also give the ratio of the overall plot surface covered by

the ground points.

Ground points
coverage (%)

Distance (cm)
Our method

Distance (cm)
CSF

Sance 86.7 19.85±17.55 88.69±171.80
Seneca 82.2 15.91±8.01 23.37±20.06
Cady 74.9 19.85±17.07 76.50±105.83
Courreou 45.5 24.95±19.95 270.65±718.56
Mangalam 45.7 23.19±24.65 28.41±46.76
Rousson 98.8 64.67±56.31 130.50±186.41
Residence 85.4 20.50±17.77 19.23±17.70
Sheffield 41.3 17.07±8.40 20.12±11.05
Wietrznia 77.4 24.33±24.77 165.05±307.35
Toledo 65.1 16.93±8.52 23.85±17.43

Figure 6: Transect extraction of the plots "Courreou" on the

first row, "Sance" on the second row, "Wietrznia" on the third row

and "Mangalam" on the fourth row. Our terrain model appears in

green, the CSF model is in blue. The point clouds have been deci-

mated for visualization purpose.

Overall, as illustrated in Figure 6, our method reproduces more
precisely the terrain surface. It does not tend to over-smooth the
ridges, mounds, and the plot borders, as it is the case with the CSF
method. Regardless of the ground points coverage, for every plot
except "Rousson", our method produces terrain surface around 20
cm away from the selected ground points, as seen on Table 6. In
the case of CSF, the results are satisfactory for relatively flat plots,
like "Seneca", "Residence", "Sheffield" or "Toledo", but deterio-
rates if the terrain presents sudden change of slopes as it is the
case for "Sance", "Wietrznia" or "Cady". Brought out by the anal-
ysis of the Hausdorff distance, our method also filters out better
the noise points under the ground surface. In particular, for the plot
"Courreou", the distance of our model to the ground points remains

contained whereas CSF distance presents a mean distance superior
to 2 m with a standard deviation over 7 m. The performance gain of
our method comes from its ability to filter correctly the noise points
under the ground surface and the vegetation points while preserving
the topology details. While remaining small on data set relatively
flat without noise points like "Residence", "Sheffield" or "Toledo",
this gain increases when the points are noisy like in "Courreou" or
when they describe a complex topology like in "Wietrznia", "Cady"
or "Sance".

Our approach has two main limitations: The first one resides in
the filtering of the vegetation; on the plots "Rousson" and "Wietrz-
nia" in particular, several bumps due to unfiltered vegetation points
appear on the elevation model. This issue can be coped by using
a deep learning approach that has proven to be successful to sep-
arate vegetation from ground points [MBK20]. The second limi-
tation is the computation time: while the CSF method computes a
terrain model in less than a minute, our approach is 10 times slower,
mainly due to the polygonization of the implicit function. Cur-
rently, based on a regular marching cube, we plan to improve our
polyganizer by following a multi-scale dual contouring approach.

5. Conclusion

In this work, we propose an efficient method designed to recover
the terrain surface model from 3D photogrammetric point clouds
acquired by UAV. Our approach relies on statistical analysis to sep-
arate ground points from vegetation points. It handles the irregular
point cloud outlines by optimizing a 2D division which later guides
the reconstruction by blending implicit quadrics through the parti-
tion of unity principle. These contributions enable us to achieve the
state of the art performance in terrain reconstruction. In the future,
it is worthwhile thinking of how to improve the vegetation filtering
by using deep learning, and how to improve the computation time
by following a dual contouring approach for the polygonization of
the implicit function.
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