
A Laplacian Based Approach for
Free-Form Deformation of Sparse Low-degree IMplicit Surfaces

Yutaka Ohtake
RIKEN

VCAD Modeling Team
.

Takashi Kanai
The University of Tokyo

Graduate School of Arts and Sciences
.

Kiwamu Kase
RIKEN

VCAD Modeling Team

Abstract

Sparse Low-degree IMplicit (SLIM) surface [11] is a re-
cently developed non-conforming surface representation. In
this paper, a method for free-form deformation of SLIM sur-
faces is presented. By employing a Laplacian based mesh
deformation technique, a global deformation is realized as
movements of the centers of the local function supports. A
graph connectivity for defining the Laplacians is simply cre-
ated using inclusion of other centers in the supports. By fol-
lowing the global deformation according to the movements
of the centers, we update each local function and its sup-
port size via several times of local least square fittings by
using the new positions of the neighboring centers. Since
the additional computations for updating local functions
are very computationally cheap, the proposed SLIM sur-
face deformation achieves an interactive surface deforma-
tion similarly to Laplacian based mesh deformation tech-
niques. Further, because a SLIM surface requires a smaller
number of elements than a mesh for representing the same
geometrical details, the computational effort for a global
Laplacian based deformation is dramatically reduced.

1. Introduction

Sparse Low-degree IMplicit (SLIM) surface [11] is a
recently developed non-conforming surface representation.
A SLIM surface consists of a set of spherically supported
quadratic/cubic polynomial implicit functions. Using SLIM
surfaces, we can achieve an economical surface representa-
tion and high-quality rendering with nice derivative estima-
tions on a surface. Fig. 2 compares rendering qualities of
the Stanford bunny mesh and its approximation by a SLIM
surface. We can clearly see an advantage of the SLIM sur-
face rendering [11] over the conventional triangle mesh with
Phong shading. Further the radius of each spherical support
can be adaptively defined according to an approximation er-

Figure 1. A free-form deformation of a highly
detailed model. Left: The gargoyle model
represented as a SLIM surface (69K quadratic
primitives). Right: A deformed model. The
red ellipsoids indicate control points.

ror between the local implicit surface and the original mesh
vertices as shown in Fig. 3.

In this paper, we propose a novel method for free-form
deformation of SLIM surfaces. We specifically consider the
application of so called the surface deformation based on
differential coordinates [2, 18, 9, 20, 16, 21, 10, 22], which
is recently an active research topic in mesh modeling, to
SLIM surfaces. In those approaches, the local details of a
surface are first encoded as implicit and rotation-invariant
representations by using differential coordinates such as
Laplacians. According to the deformation of a sparse set
of control points specified by the user, a surface in the ROI
(region of interest) is reconstructed so as to preserve the
details of a surface. Consequently, a detail-preserving de-
formation of surfaces is achieved compared to the classical
spatial deformation techniques ([5], [15], etc.).



Figure 2. Left: the Stanford bunny mesh (35K
triangles) rendered by Phong shading. Right:
A SLIM surface approximation of the mesh
vertices (8K quadratic primitives). While al-
most the same geometrical details are ap-
proximated, the polygonal artifacts are elimi-
nated.

Figure 3. Adaptively sized spherical supports
of the SLIM surface shown in the right im-
age of Fig. 2. The actual spheres are twice
as large as the spheres in the images.

Our contribution here is the introduction of such the sur-
face deformation to SLIM surfaces. Our approach can be
positioned as the primary approach of the surface deforma-
tion for point set surfaces. All of previously proposed ap-
proaches for deforming point set surfaces [13, 1] or implicit
surfaces [4, 3] were considered with only classical spatial
deformations. In such spatial deformations, the surface de-
tails are generally lost especially during the large deforma-
tions.

In the deformation, we should consider the several tech-
nical issues: First, a SLIM surface does not have the con-
nectivity information between neighbor points. To apply the
surface deformation technique, we then have to construct
such connectivity before the deformation. Second, a SLIM
surface has a set of local supports. During the deformation
of a surface, incremental updates of such supports have to
be considered.

Here we divide the computation of surface deformation
for SLIM surfaces into two optimization problems: One is
the global optimization of the center positions of supports
and the propagation of the local transformations. The other
is the local optimization of each implicit function in local
supports.

Our global/local optimization method can be regarded
as a simple multi-resolution technique. The rough geome-
try of a surface, which is represented by the center positions
of supports, is deformed by a global optimization (a Lapla-
cian based approach). Each local optimization deforms the
detailed geometry which is encoded by the polynomial im-
plicit function. The Laplacian based global optimization is
efficiently performed after factorizing the Laplacian matrix
[17]. Our local optimization for each local function con-
sists of small linear least square fittings. Thus we achieve
interactive surface deformations.

The most important benefit of the proposed method is
demonstrated in Fig. 1. The gargoyle model is originally
represented by over a million of triangles (863K vertices).
By using Laplacian based mesh deformation techniques, a
global deformation of such a highly detailed geometry is a
challenging task because it is hard to factorize a large Lapla-
cian matrix even if the matrix is highly sparse. In contrast,
a SLIM surface requires only 69K quadratic primitives for
representing almost the same geometrical details as shown
in the left image of Fig. 1. This fact means that the size
of the Laplacian matrix is much smaller, then the compu-
tational effort for factorizing Laplacian matrix is dramati-
cally reduced. In other words, comparing with mesh-based
approaches we can handle more highly detailed geometry
using our SLIM-based deformation technique.

2. Free-form deformation of SLIM surfaces

A SLIM surface is defined as a set of compactly sup-
ported implicit surfaces each of which is composed of the
following local parameters of function supports and a poly-
nomial implicit function. (see also the right image of
Fig. 4):

• Center position c = (cx,cy,cz)T of a local support.

• Local orthogonal frame (du,dv,dw) for a local support.
The unit vector dw indicates the normal direction of



the local function. The tangential directions are repre-
sented by the unit vectors du and dv. The local coor-
dinates (u,v,w) for a point x are calculated by u(x) =
du · (x−c), v(x) = dv · (x−c), and w(x) = dw · (x−c).

• Radii of the ellipsoidal support, ru, rv, and rw in the
directions du, dv, and dw, respectively. Given a point
x, we can check whether x is included in the support
by 1− (u(x)/ru)2 − (v(x)/rv)2 − (w(x)/rw)2 > 0.

• Local implicit function f (x) whose zero-level repre-
sents a local approximation of the surface. It is a bi-
variate height function in implicit form, i.e. f (x) =
w(x)− h(u(x),v(x)). For example, h(u,v) = Au2 +
Buu +C v2 + Du + E v + F in the quadratic primitive
case.

In the original SLIM surfaces [11], spherically supported
implicit functions are used. In this work, we use ellipsoidal
supports because deforming a SLIM surface causes local
stretches in the tangential directions as shown in the left
image of Fig. 4.

Figure 4. Left: A deformation of the bunny’s
tail. Right: The notations for an ellipsoidally
supported function. The direction dv is omit-
ted in the image.
Our deformation consists of the following four steps.

Fig. 5 shows how each step affects a SLIM surface.

1. Creation of a neighbor graph of the centers. The cen-
ters are connected using inclusion of other centers in
the supports ((b) in Fig. 5).

2. Global deformation realized by the movements of the
centers by employing a Laplacian based mesh defor-
mation technique ((c) in Fig. 5).

3. Update the local frame and radii of each function sup-
port. The shape of the support is locally deformed ac-
cording to the movements of its neighboring centers
((d) in Fig. 5).

4. Re-fitting each of the local implicit functions. The
function is also locally deformed according to the
movements of their neighboring centers ((e) in Fig. 5).

2.1. Creating a neighbor graph

We firstly create a graph by connecting the centers C =
{ci|1 ≤ i ≤ N}. This graph is used in the both global and
local deformations. Two centers ci1 and ci2 are connected by
an edge if either ci1 is included in the i2-th support or ci2 is
included in the i1-th support. More formally, the conditions
can be written as the following inclusion tests of ellipsoids;

1− (ui2(ci1)/ru
i2)

2 − (vi2(ci1)/rv
i2)

2 − (wi2(ci1)/rw
i2)

2 > 0
or 1− (ui1(ci2)/ru

i1)
2 − (vi1(ci2)/rv

i1)
2 − (wi1(ci2)/rw

i1)
2 > 0.

In order to perform efficient range queries, the coordinates
of the centers are sorted using a kd-tree.

2.2. Global deformation by movements of
centers

Using the graph created in the above procedure, we can
define a graph Laplacian ∆(c) at a center c.

∆(c) = c− 1
∑ j ω j

∑
j

ω j c j,

where c j is a neighboring center of c and ω j is a weight for
c j. In our method equal weights are used, i.e. ω j = 1. An
alternative choice of the weighting scheme is to take an in-
verse of the edge length [7] which is effective in the case the
graph vertices are distributed irregularly. Since the centers
of a SLIM surface are regularly distributed, equal weights
even work well. Once a graph Laplacian is defined, tech-
niques developed for mesh deformations can be adapted to
move the center positions. For the Laplacian based defor-
mation technique, we employ a combination of two meth-
ods proposed in [9] and [21].

In our experimental system, a user specifies a set of con-
trol points D = {ck|1 ≤ k ≤ M} which is a subset of C

(the index k for D indicates a different enumeration from i
for C ) and their desired positions {pk|1 ≤ k ≤ M}. Addi-
tionally, as demonstrated in Fig. 6 local transformations de-
noted by {Tk|1 ≤ k ≤ M} are specified at the control points.
Each local transformation is propagated to all centers, then
at each center the propagated transformations are averaged.
We denote the averaged transformation at each center ci as
a 3×3 matrix Ri.

Similarly to [9], we solve the following global least
square fitting in order to obtain new center positions C̃ =
{c̃i|1 ≤ i ≤ N}.

N
∑
i=1

‖∆(c̃i)−Ri ∆(ci)‖2 +
M
∑
k=1

(Wk ‖c̃k −pk‖)2 → min, (1)



(a) (b) (c) (d) (e)

Figure 5. Algorithm overview. The drawn supports are smaller than the exact ones in order to simply
the images. The exact supports are shown in the dashed lines in the second image. (a) A user
selects two control points which are the centers of the supports colored in red. (b) The centers
are connected by the green edges using inclusion of other centers in the supports. (c) The center
positions are moved by a Laplacian based approach. (d) The shapes of the supports are updated by
the movements of their neighboring centers. (e) The local implicit functions are also updated.

Figure 6. An example of local transformations
in the SLIM-based deformations. A control
point on the top is moved as shown in the
middle left image. In the right two images, ro-
tations are specified at such a control point.

where Wk is a weight for the k-th control point. In our ex-
periments we set Wk = N/M which equalizes the first and
second terms of (1).

By applying the normal equation method [14], (1) can be
solved as a linear least square problem, i.e. solving N ×N
sparse linear systems. The sparsity is due to the local sup-
port of ∆. The matrix depends on only the graph connec-
tivity and the choice of D . Thus, if we factorize the matrix
once, the factorization can be reused during the changes of
{pk} and {Tk}. The new center positions can be quickly ob-
tained by three times of back-substitutions (x, y, and z com-
ponents). As recommended in [17], we use TAUCS library
[19] which includes very efficient factorization algorithms.

To propagate {Tk}, we use the method proposed in [21].
In their method, a harmonic map denoted by {hm

i |1≤ i≤N}
is created for each control point cm. The values of the har-
monic map are used as the weights in propagating Tm. The
harmonic map takes maximum at cm (hm

m = 1) and minimum
at the other control points (hm

k = 0 for m 6= k). Fig. 7 shows
an example of the harmonic map from the control point on

the shoulder to the other two control points. Notice that we
also have the other two harmonic maps (from the head and
from the tail) which are not shown in Fig. 7.

Figure 7. Top: A deformed dinosaur model.
Bottom : The scalar field for propagating the
local transformation from the control point
on the shoulder. Pink corresponds to the
highest weight and dark-blue corresponds to
the lowest weight.
In our implementation, each harmonic map is computed

by solving the following optimization problem.

N
∑
i=1

∆(hm
i )2 +

M
∑
k=1

(Wk (hm
k −δmk))

2 → min, (2)

where δmk equals to 1 if m = k, otherwise 0. After solving
(2) M times, M harmonic maps are created. At each cen-
ter ci, the scalars {Wm hm

i |1 ≤ m ≤ M} are assigned. Each
scalar Wm hm

i are used as the weight for Tm in the averaging
procedure. As claimed in [21], to solve (2) we can share the
same sparse matrix used for solving (1), thus the additional
computations are only M times of back-substitutions.

Note that the formulation (2) is slightly different from
[21]. Actually, solving (2) does not create an exact har-



monic map since the conditions {∆(hk) = 0} at the control
points break the harmonic property. Our scalar field has no
guarantee that the values of the map is bounded by [0,1].
For resolving this problem, we simply truncate the values
to [0,1].

2.3. Updating local frame and support size

Using the new center positions, we update the local
frame (du,dv,dw) and the support radii ru, rv, and rw of
each function support. To update such local parameters at
c, only the movements of the local neighbors, i.e. {c j} and
{c̃ j}, are used.

In normal direction The normal direction dw is updated
by d̃w = (J−T dw)/‖J−T dw‖ where the 3×3 matrix J is the
Jacobian matrix at c and −T means the transposed inverse
matrix. An approximation of J is obtained by the following
least square fitting.

∑
j
‖J(c j − c)− (c̃ j − c̃)‖2 → min (3)

After a simple calculation, the solution of (3) is directly ob-
tained by J−T = AB−1 where two 3×3 matrices are given
by

A = ∑
j
(c j − c)(c̃ j − c̃)T , B = ∑

j
(c̃ j − c̃)(c̃ j − c̃)T .

The matrix inversion of B is not possible if c̃ and all {c̃ j}
lie on the same plane. On such a flat region, a new nor-
mal direction d̃w can be simply computed by the covariance
analysis of B [8].

The support radius in the normal direction is kept as r̃w =
rw since the local movements of the centers mainly consist
of the local stretching in the tangential directions.

In tangential directions It is possible to update the re-
maining two tangential directions and their support radii us-
ing J as demonstrated in [6]. In their case very accurate J
can be obtained in the analytical way since an analytical for-
mula of the spatial deformation is provided. In our case J
is numerically estimated by solving (3). According to our
experiments, our J is sometimes not accurate enough to use
for updating the radii in the tangential directions. Thus, we
perform another fitting as follows.

The boundary of the old support on the tangent plane
can be written as the zero-level of φ(u,v) = 1− (u/ru)2 −
(v/rv)2. Similarly, the boundary of the new support is the
zero-level of φ̃(ũ, ṽ) = 1− (ũ/r̃u)2 − (ṽ/r̃v)2. As illustrated
in Fig. 8, our fitting is aimed to keep the values of φ at each
of the old center positions as much as possible at the new

center positions. Thus the following least square fitting is
applied.

∑
j

(

φ (u(c j),v(c j))− φ̃ (ũ(c̃ j), ṽ(c̃ j))
)2 → min (4)

In order to solve the above problem as a linear least square
problem, φ̃ is rewritten as φ̃(s, t) = α s2 + 2β st + γ t2.
The temporal tangential coordinates (s, t) are computed by
s(x) = ds · (x− c̃) and t(x) = dt · (x− c̃) where two orthog-
onal unit vectors ds and dt are perpendicular to d̃w.

After solving (4) with respect to α , β , and γ , we analyze
them by the following eigenvalue decomposition.
(

α β
β γ

)

=

(

ξ s
1 ξ t

1
ξ s

2 ξ t
2

) (

λ1 0
0 λ2

) (

ξ s
1 ξ s

2
ξ t

1 ξ t
2

)

The two unit eigenvectors (ξ s
1 ,ξ t

1) and (ξ s
2 ,ξ t

2) indicate two
principal orthogonal axes of the ellipse φ̃ = 0. Thus, the
new tangential directions are given by d̃u = ξ s

1 ds + ξ t
1 dt

and d̃v = ξ s
2 ds + ξ t

2 dt . The eigenvalues λ1 and λ2 give the
squared inverse of radii of φ̃ = 0. So, we get the new sup-
port radii as r̃u = 1/

√
λ1 and r̃v = 1/

√
λ2.

If we fail to solve (4) or either λ1,2 is negative (very rare
case in our experiments), then we switch the fitting proce-
dure from an ellipse to a circle, i.e. φ(ũ, ṽ) = 1−α ũ2 −
α ṽ2. Fitting a circle is never failed unless the all neighbor-
ing centers {c̃ j} lie on the w̃-axis.

Figure 8. Updating the support on the tan-
gent plane (4). The levels of the φ(u,v) at each
of the old centers {c j} (right) should be pre-
served at the new centers {c̃ j} (left).

2.4. Local polynomial fitting

Using the neighboring new and old center positions, we
re-fit the local polynomial implicit function f (x). As illus-
trated in Fig. 9, the idea is essentially same as (4). We try to
keep the function values { f (c j)} at the new centers {c̃ j}.

∑
j

(

f̃ (c̃ j)− f (c j)
)2

+
(

f̃ (c̃)− f (c)
)2 → min (5)

Since f (c) 6= 0 in general, c is included in (5). Solving (5)
requires a 6× 6 matrix inversion in the quadratic primitive



case. We use SVD [14] for computing the matrix inversion
since the matrix is sometimes singular.

Figure 9. Updating the local implicit function
(5). The levels of the f (x) at each of the old
centers {c j} (right) should be preserved at
the new centers {c̃ j} (left).

3. Results and discussion

3.1 Implementation summary

Fig. 10 shows a sequence of deformations via several in-
teractions of a user. In the following, we explain user’s in-
teraction steps and the corresponding computations which
are performed in each step.

Step 1: A neighbor graph is created. Then the user selects
several control points from the centers.

Step 2: After deciding a choice of control points, the ma-
trix factorization for solving (1) and (2) is performed.
Then, the weights for averaging the local transforma-
tions are computed by solving (2) M times.

Step 3: The user changes the positions and the local trans-
formations of the control points. Simultaneously with
the user’s control, the new center positions are com-
puted by solving (1) after averaging the local transfor-
mations. Then, we solve (3), (4), and (5) at each of the
local supports.

Step 4: When the user confirms the deformation, we go
back to the step 1 for applying another deformation
with a different choice of control points.

In step 3, solving (5) seems to be a little bit expensive
comparing with the others, however an interactive updating
is possible in deforming relatively small SLIM models, for
example the bunny and dinosaur. For large models like in
Fig. 1, solving (5) is omitted during the user moves a control
point or local transformation. In this case all coefficients
are set to zero that means we set f (x) = 0 as the tangent
plane (flat primitive). The left image of Fig. 11 shows a
rendering result during the user’s change of a control. If the
user stops the change, the high quality geometry is rendered
after solving (5).

In our current system, specifying ROI is not supported.
So all elements of a SLIM surface participate in the com-
putation. The fixed parts under a deformation are roughly
pined by a few control points as shown in Fig.10. Of course
the deformation using ROI seems to work as well as mesh
deformation case.

Figure 11. Left : the model rendered using
the tangent planes by omitting local fitting
(5). The details are lost in the rendering,
but quick response to user’s control. Right :
the model rendered using the quadratic prim-
itives.

3.2 Timing

The timing results are reported in Table 1. In our ex-
periments we used a standard 3.0GHz Pentium 4 PC with
2GB RAM. In all results presented in this paper we used
quadratic primitive based SLIM models. The choice of the
polynomial degree affects only the time for solving (5).

Since the cost of propagating the local transformations is
proportional to the number of control points, we report two
cases in deformations of the armadillo model (correspond-
ing to (a)–(c) and (c)–(e) in Fig. 10).

Rendering SLIM surfaces proposed in [11] is too time-
consuming for interactive movements of control points. For
example, creating an image of the Armadillo model with
512×512 pixels takes about 1 second. To save the render-
ing time during a user’s movement of a control point, we
decrease the support size and omit the blending intersec-
tions. The resulting rendering time is less than 0.1 second,
thus the overhead of rendering a SLIM surface is relatively



(a) (b) (c) (d) (e)

Figure 10. A sequence of deformations via several interactions of the user. (a) The user selected
control points. (b) The user deformed the left leg. (c) After deforming the right leg, the control points
were released. (d) With new control points, the user deformed the arms. (e) The head was also
deformed.

small. Once the user releases the control point, the full ren-
dering procedure is performed.

3.3 Comparison with mesh deformation

In Fig. 12 we compare a mesh-based deformation and
our SLIM-based deformation. For the mesh-based defor-
mation, the optimization (1) was solved with respect to the
mesh vertex positions instead of the center positions of a
SLIM surface.

According to our experiments large global distortions
were observed in the mesh-based deformations. On a SLIM
surface, the local details are encoded by the local implicits
and the support center positions represent only a simplified
and smooth geometry. Thus, the Laplacian vector field on
the support centers is very smooth and can be accurately
integrated in a numerical way. In contrast, the Laplacian
vector field on a dense and detailed mesh is not so smooth
since the Laplacians contain the local detail information.
We guess that an accurate integration of such a complicated
vector field is a numerically difficult task.

Another benefit to use a SLIM surface for solving (1) is
that relatively less constraints are required to successfully
compute the matrix factorization. We think this is simply
caused by the fact that the number of support centers is
much less than the number of mesh vertices. As demon-
strated in Fig. 13, we could deform the dinosaurs model
represented as a SLIM surface using only a few control
points. In our experiments, the matrix factorization for the
dinosaurs mesh using such a few number of control points
was failed due to a numerically ill-conditioned matrix.

As reported in the last two rows on Table 1, SLIM sur-
faces are effective to save the computational time in solv-
ing (1). However, a total time to update a shape for each
movement of a control point in SLIM-based deformations
is almost the same as that in mesh-based deformations.
In SLIM-based deformations, we must perform additional
computations: estimating the new local frames, radii, and

Figure 12. A comparison of a mesh-based de-
formation (top) and our SLIM-based deforma-
tion (bottom). By setting a similar set of con-
trol points, the point on the top of a head was
slightly moved down. On the head and right
leg, unwanted large global distortions were
observed in the mesh-based deformation. In
contrast, such distortions did not happen in
the SLIM-based deformation.

local implicits. However, these computations are local-
ized at each primitive since only the neighboring centers
are used. Thus, it is easy to accelerate SLIM-based de-
formations by parallelizing the local computations using a
multi-core processor or GPU with which standard PCs are



Model N M Graph creation Factorization for (1) (2) Average {Tk} Solve (3) (4) Solve (5)
+ Solve (2) + Solve (1)

Dinosaurs 9K 3 0.088 sec. 0.91 sec. 0.062 sec. 0.031 sec. 0.19 sec.
Armadillo 25K 8 0.28 sec. 3.6 sec. 0.18 sec. 0.094 sec. 0.50 sec.

25K 11 0.44 sec. 4.6 sec. 0.24 sec. 0.094 sec. 0.50 sec.
Gargoyle 69K 8 1.4 sec. 13 sec. 0.77 sec. 0.29 sec. 1.5 sec.

Dinosaurs (SLIM) 9K 10 0.088 sec. 1.1 sec. 0.047 sec. 0.031 sec. 0.19 sec.
Dinosaurs (mesh) 56K 10 – 4.2 sec. 0.27 sec. – –

Table 1. Timing results.

Figure 13. Similar SLIM-based deformation
with the bottom images in Fig. 12 using more
sparsely placed control points.

equipped nowadays.

3.4 Sharp feature preservation

One good property of the mesh-based Laplacian defor-
mations is the preservation of sharp features. This good
property is also kept in our SLIM-based deformations as
demonstrated in the top images of Fig. 14. Instead of us-
ing mesh connectivity, an artificial neighboring graph on a
SLIM surface causes no problem even near the sharp fea-
tures.

In our current SLIM surface, only a polynomial im-
plicit can be assigned to each local support. This restric-
tion slightly smooths out sharp features due to the blending
of overlapped implicits as shown in the bottom images in
Fig. 14. As indicated in [12], we need to assign several im-
plicits with Boolean operations in order to represent exact
sharp features. Even if several implicits are assigned to a
local support, our proposed polynomial updating (5) seems
to work well. We just need to apply the refitting procedure
to each local implicit separately.

3.5 Problems and future work

We encountered the following problems and will try to
solve them in the future.

Figure 14. Top : SLIM-based deformation
of an object with sharp features. Bottom
: sharp features represented by our current
SLIM surface.

• As shown in Fig. 15, highly stretching might create
small holes. Of course we did not encounter this prob-
lem in typical deformations. This problem means el-
lipsoidal supports can not capture a large amount of
deformations. We think this problem can be solved by
fissions of elements similarly to [13].

• Topological changes are not possible. To allow the
topological changes during deformations we need dy-
namic changes of the graph structure and local boolean
operations for eliminating the redundant parts of a sur-
face. Using Laplacian based approach is not suited for
this purpose because changing the connectivity of the
graph invokes re-factorization of the Laplacian matrix.
Spatial deformation techniques are more suitable for
solving this problem. Further our local optimization
method can also be combined with spatial deformation
methods.



Figure 15. Highly stretching might create
small holes.

Acknowledgments

We would like to thank Alexander Belyaev and Shin
Yoshizawa for their valuable and constructive comments.
We are grateful to anonymous reviewers for their useful
comments and suggestions. The models are courtesy of
VCG-ISTI via the AIM@SHAPE Shape Repository (gar-
goyle), the Stanford 3D Scanning Repository (bunny, ar-
madillo), and Cyberware (dinosaur). This study was sup-
ported in part by Industrial Technology Research Grant Pro-
gram in ’04 from New Energy and Industrial Technology
Development Organization (NEDO) of Japan.

References

[1] B. Adams and P. Dutré. Interactive boolean operations on
surfel-bounded solids. ACM Transaction on Graphics (Proc.
SIGGRAPH 2003), 22(3):651–656, 2003.

[2] M. Alexa. Differential coordinates for mesh morphing and
deformation. The Visual Computer, 19(2):105–114, 2003.

[3] A. Angelidis, M.-P. Cani, G. Wyvill, and S. King. Swirling-
sweepers: Constant-volume modeling. In Proc. 12th Pacific
Conference on Computer Graphics and Applications, pages
10–15. IEEE CS Press, Los Alamitos, CA, 2004.

[4] A. Angelidis, G. Wyvill, and M.-P. Cani. Sweepers: Swept
user-defined tools for modeling by deformation. In Proc.
International Conference on Shape Modeling and Applica-
tions 2004, pages 63–73. IEEE CS Press, Los Alamitos, CA,
2004.

[5] A. H. Barr. Global and local deformations of solid primi-
tives. In Computer Graphics (Proc. SIGGRAPH 84), pages
21–30. ACM Press, New York, 1984.

[6] M. Botsch and L. Kobbelt. Real-time shape editing using ra-
dial basis functions. Computer Graphics Forum (Proc. Eu-
rographics 2005), 24(3):611–621, 2005.

[7] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Im-
plicit fairing of irregular meshes using diffusion and cur-
vature flow. Computer Graphics (Proc. SIGGRAPH 1999),
33(Annual Conference Series):317–324, 1999.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized

points. In Computer Graphics (Proc. SIGGRAPH 1992),
pages 71–78, 1992.

[9] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl,
and H.-P. Seidel. Differential coordinates for interactive
mesh editing. In Proc. International Conference on Shape
Modeling and Applications 2004, pages 181–190. IEEE CS
Press, Los Alamitos, CA, 2004.

[10] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. Linear
rotation-invariant coordinates for meshes. ACM Transac-
tion on Graphics (Proc. SIGGRAPH 2005), 24(3):479–487,
2005.

[11] Y. Ohtake, A. Belyaev, and M. Alexa. Sparse low-degree
implicit surfaces with applications to high quality render-
ing, feature extraction, and smoothing. In Proc. 3rd Euro-
graphics / ACM SIGGRAPH Symposium on Geometry Pro-
cessing, pages 149–158. Eurographics Association, Aire-la-
Ville, Switzerland, 2005.

[12] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Sei-
del. Multi-level partition of unity implicits. ACM Transac-
tions on Graphics (Proc. SIGGRAPH 2003), 22(3):463–470,
2003.

[13] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. ACM Transac-
tion on Graphics (Proc. SIGGRAPH 2003), 22(3):641–650,
2003.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 1993.

[15] T. W. Sederberg and S. R. Parry. Free-form deformation
of solid geometric models. In Computer Graphics (Proc.
SIGGRAPH 86), pages 151–160. ACM Press, New York,
1986.

[16] A. Sheffer and V. Kraevoy. Pyramid coordinates for mor-
phing and deformation. In Proc. 2nd International Sympo-
sium on 3D Data Processing, Visualization and Transmis-
sion, pages 68–75. IEEE CS Press, Los Alamitos, CA, 2004.

[17] O. Sorkine. Laplacian mesh processing. In EUROGRAPH-
ICS 2005 State-of-The-Art-Report, 2005.

[18] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl,
and H.-P. Seidel. Laplacian surface editing. In Proc. 2nd
Eurographics / ACM SIGGRAPH Symposium on Geome-
try Processing, pages 179–188. Eurographics Association,
Aire-la-Ville, Switzerland, 2004.

[19] S. Toledo. A library of sparse linear solvers, ver-
sion 2.2. Tel Aviv University, September 2003.
http://www.tau.ac.il/ stoledo/taucs/.

[20] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-
Y. Shum. Mesh editing with poisson-based gradient field
manipulation. ACM Transaction on Graphics (Proc. SIG-
GRAPH 2004), 23(3):644–651, 2004.

[21] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel. Harmonic
guidance for surface deformation. Computer Graphics Fo-
rum (Proc. Eurographics 2005), 24(3):601–609, 2005.

[22] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and
H.-Y. Shum. Large mesh deformation using the volumet-
ric graph laplacian. ACM Transaction on Graphics (Proc.
SIGGRAPH 2005), 24(3):496–503, 2005.


