Surface Quality Assessment of Subdivision Surfaces
on Programmable Graphics Hardware

Yusuke Yasui

Takashi Kanai

Keio University SFC
Faculty of Environmental Information
5322 Endo, Fujisawa, Kanagawa, 252-8520, JAPAN.
{t00950yy/kanai } @sfc.keio.ac.jp

Abstract

In this paper, we propose a method of subdivision
surface quality assessment by reflection lines on pro-
grammable graphics hardware (GPU). Using reflection
lines is effective for surface quality assessment because
the shapes of these lines are changed according to a slight
variance of surface shapes. This fact also implies that
reflection lines should be calculated precisely. We introduce
an intuitive, fast and robust approach for calculating reflec-
tion lines by using a plane light source texture based on a
fragment program of recently introduced GPU. In addition,
we describe a method of calculating position and normal
of subdivision surfaces for each fragment on GPU. As our
framework for calculating reflection lines does not depend
on the level of subdivision, a precise assessment can be
established even for low levels of subdivision polygons.

Keywords: reflection line, programmable graphics
hardware, fragment program, subdivision surface

1. Introduction

Surface quality assessment of aesthetic shape becomes
evermore important in the applications of industrial design
and engineering, due to rapid and widespread propagation
of three-dimensional (3D) CAD/CAM systems. Especially
in the design of car bodies, designers check the quality of
surfaces by observing reflected images of parallel fluores-
cent lamps on the clay models. They check the appearance
of the shape with reflection of incoming light, detect the dis-
tortion of these images, and investigate how to modify the
corresponding regions.

To artificially simulate such optical phenomena on a
computer, we calculate a curve of reflection image on a
surface numerically from the surface geometry, the eye po-

e

normal vector

light line L
eye E n

reflection line

surface S

Figure 1. Reflection line.

sition and the position of a light line as inputs. Such a
curve is called reflection line [10, | 1](Figure 1). In earlier
CAD systems, a pseudo-highlight line, a simpler simulation
model, was used because of the limitation of computational
resources. The recent computer hardware has enough power
to calculate a set of reflection lines interactively.

In this paper, we propose a method of calculating and
displaying reflection lines on subdivision surfaces by using
programmable graphics hardware. The recent development
of GPU is more rapid than that of CPU. Thanks to a pro-
grammable shader, not only the rendering speed of poly-
gons is faster, but also a huge variety of other uses of GPU
can be thought of.

The main point of this paper is that we use floating-point
operations of pixels. This is one of the new functional-
ities of the so-called “second generation” programmable
GPU such as nVIDIA GeForce FX and ATI RADEON
9700/9800. We propose an algorithm of calculating a set
of reflection lines only in GPU. We also propose fragment-

based computation of positions and partial derivatives on a
subdivision surface. This allows the computation of high
quality reflection lines even for low levels of subdivision
polygons.

2. Related Work
2.1. Reflection Lines

A Reflection line [10, 11] is a curve on a surface seen
by observers, when a light line is reflected (Figure 1). The
equation of a reflection line is as follows:

S—F 9 S—F
[S—E| (|S—E| ”)”
where S, n, L, E denote a point on the surface, a normal
vector of S, a point on a light line, and the eye position,
respectively. The more simplified highlight line [1] is a set
of points on the surface for which the distance between a
straight line extending the surface normal and a light line is
zero. Totally these lines are called characteristic lines [8].
The difference is that a reflection line is view-dependent; it
depends on the surface geometry, the position of the light
line and the eye position, while a highlight line depends
only on the first two terms. It can be said that the former is
a more physically correct simulation model than the latter.
These lines are used not only for checking the quality of sur-
faces, but also as a guide for modifying surfaces [5, |3, 16].

It is in general impossible to analytically calculate a re-
flection line on surface, so the numerical calculation, for
example, a method based on PDE (partial differential equa-
tion) [8, 10, 11] or a method based on the replacement by
the intersection between a surface and a plane [1], is car-
ried out. In the PDE-based approach, first one searches an
initial point on a surface satisfying the Equation (1). It is
used as a start point for finding a curve. In each step, the
method finds a neighbor point on a curve by using a numer-
ical integration method such as Runge-Kutta [14]. When
a point reaches a surface boundary, the method restarts to
find a point in the reverse direction. Finally a reflection line
is calculated in the form of a poly-line. This is basically
a one-by-one computation: if one calculates ten reflection
lines for ten surfaces, a hundred computations for search-
ing initial points and for finding reflection lines would be
needed.

One problem of such numerical methods is that they can-
not be calculated robustly. In case that a line passes through
a region with higher curvature, the step size of numerical
integration should be set to a smaller value. Especially on
a concave region the image reflected by a light line is not
always a line (a circle, a band, a knot, etc.). In such a case
a control of the step size is needed which could make the
computation unstable.

L-S

e

On the other hand, zebra mapping, a similar approach
to our method, is used for easily evaluating the quality of
surfaces. A texture with striped pattern is mapped on a sur-
face, then distortions of the mapped patterns are detected.
Such mapped stripe patterns, however, are not physically
correct at all. Another approach called cubic environment
mapping [7] is also a texture-based approach such as zebra
mapping. There is little difference between cubic environ-
ment mapping and the basic idea of our approach. In cubic
environment mapping, a reflection vector is calculated only
at each vertex of a polygon and a vector for a point inside
a polygon is calculated by linear interpolation. Thus the re-
sult for a point inside a polygon is not precise at all. On the
other hand, our approach calculates a position and a normal
vector of a subdivision surface for each fragment, establish-
ing a more precise computation of reflected images.

2.2. Subdivision Surfaces

In this paper, we mainly focus on Catmull-Clark subdi-
vision surfaces [4]. A Catmull-Clark surface is generated
by recursively subdividing a quadrilateral control polygon.
The limit surface is an uniform bi-cubic B-spline surface
with C? continuity except at extraordinary points. Our al-
gorithm, however, can also be applied for other types of sub-
division surfaces such as Loop’s subdivision surface [12].

Bolz and Schroder have proposed an algorithm for gen-
erating subdivision surfaces on the strength of hardware
[2,3]. They note that the computation of a position on a
subdivision surface can be reduced to a linear combination
of basis functions and control points, and then fast com-
putation can be established by using GPU. The outputs of
this approach, however, are only subdivided polygons, and
are not what we are looking for. In the rendering process,
a polygon is rasterized into several fragments. A position
and a normal vector of each fragment is generated by a lin-
ear interpolation of vertices of a polygon. Strictly speaking,
they are not exact ones of the limit surface at all. Our algo-
rithm needs an exact position and a normal vector for each
fragment.

On the other hand, Stam has shown that the exact evalu-
ation of a subdivision surface for arbitrary parameter value
is possible [15]. We implement this algorithm described
in [15] on GPU. Zorin and Kristjansson have proposed an
extended algorithm for piecewise smooth subdivision sur-
faces [17].

3. Reflection Lines Using GPU

In this section, we describe the basic idea and the algo-
rithm of our novel approach for calculating reflection lines
on programmable graphics hardware.

3.1. Basic Idea

Reflection lines are calculated by using Equation (1).
The meaning of Equation (1) can be described as follows:

A reflection line is a set of points on a surface sat-
isfying the condition that the angle between the
vector from a point f on the surface to the eye
position E and a surface normal n equals that be-
tween a vector from f to a point L on a light line
and n.

The above definition can be rewritten as follows:

For a vector from the eye position F to a point f
on the surface, a reflection vector r is calculated
by a surface normal n. If an intersection point x’
between a light line and the line extending r is
found, the set of points f on S, each of which is
corresponded to 2/, is a reflection line.

Our idea is based on the latter definition. Figure 2 illus-
trates the idea. Instead of a set of light lines, an area light
source is put directly above a surface (Figure 2(a)). It can be
regarded as a set of light lines which are arranged without
any spacing.

For a vector from eye position F to a point f on a surface
S, areflection vector 7 is calculated by a surface normal n.
If a line which extends a vector r from f intersects the plane
of an area light source, f should be a point of reflection. Let
x be such an intersection point. The above calculation is ap-
plied for all points on a surface, and then a mapping f — =z
from a point f on a surface to an intersection point 2 with an
area light source can be constructed. Note that this mapping
does not always have a one-to-one correspondence.

After constructing this mapping, we define a line on an
area light source (Figure 2(b)). If x is on such a line, it can
be defined as x’ and a corresponding f is on a reflection
line.

3.2. Algorithm

In this subsection we describe an algorithm for calcu-
lating a reflection line which realizes our basic idea. This
algorithm is executed in the rendering process.

We prepare the eye position, the size and the height of
a plane light source and a texture which is regarded as a
set of light lines as inputs. Each fragment has its position
and a normal vector. By using them and the eye position,
we calculate the reflection vector on a fragment, and then
calculate the intersection point between the reflection vector
and the area light source. A texture corresponding to a set
of light lines is mapped to such an area light source. So we
fetch the color from the texture at the intersection point and

a finite plane

(area light source)
reflection vector r

normal n

intersection point x

<9 z
eye £
fragment f*
X y
(a)
4
A light line on an area light source

<0
eye £

reflection line
(b)

Figure 2. (a) The reflection vector is cal-
culated from the vector from eye position to
surface (f — E) and the normal vector on the
surface. An intersection point (z) is calcu-
lated from a reflection vector and an area light
source. (b) The surface is colored by texture
at a set of intersection points.

assign it to a fragment. If the intersection point is on one of
the light lines, a fragment is put on a reflection line.

Reflection lines can be constructed by applying this al-
gorithm to all of the fragments on the surfaces.

4. Fragment-based Evaluation of Subdivision
Surfaces Using GPU

In the rendering process, rendering primitives such as tri-
angles are decomposed into a set of fragments. We apply
the algorithm described above for each fragment.

Here we consider applying our algorithm to subdivision
surfaces. In the rendering of subdivision surfaces, in gen-
eral, polygons subdivided several times are used to display
the surface, and we use a limit point for each vertex if
needed. On the other hand, in the rasterization part dur-
ing the rendering process, a position of each fragment is
calculated by a linear interpolation of vertex positions in a

extraordinary
point

o

Figure 3. Positions and their partial deriva-
tives are evaluated on each ()} plane.

primitive. A calculated position does not have a totally ex-
act value. This can be a problem in the case when polygons
are coarse. Furthermore the shape of reflection lines is very
sensitive to the change of surface geometry. Thus we need
the exact position and normal vector of the limit surface for
each fragment to calculate reflection lines precisely.

To solve this issue, we utilize an algorithm proposed by
Stam [15]. Stam has shown that exact evaluation of subdi-
vision surfaces at arbitrary parameter values is possible. In
this section, we describe how to implement this algorithm
on programmable graphics hardware.

4.1. Exact Evaluation of Subdivision Surfaces at
Arbitrary Parameter Values

In this subsection, we review the algorithm of Stam. He
has shown that the position of Catmull-Clark surface and
its derivatives can be evaluated directly at a parameter value
only by using its control polygon.

We assume that all the control polygons are quadrilat-
eral. First, we subdivide an original control polygon once
by using the recursive subdivision rule. By this opera-
tion, each subdivided polygon has at most one extraordi-
nary point. The limit surface of a rectangular polygon which
has no extraordinary point (called regular rectangle) equals
uniform bi-cubic B-spline patch and it can be easily param-
eterized. As illustrated in Figure 3, a patch including an
extraordinary point is recursively subdivided into four sub-
patches. The three sub-patches which do not include the
extraordinary point can also be represented by uniform bi-
cubic B-spline patches.

The position on a subdivision surface for a point in two-
dimensional parameter space (u,v) is represented as fol-

lows [15]:
s(u,v) = CETA" "1 Xpb(t g (u, v)). (2)

Each position is evaluated on {2}, where n and k are deter-

mined by the two parameters v and v. Cy in Equation (2) is
represented as follows:

Co=V~1Cy, 3)

where Cj is a (2IN+8)-dimensional column vector rep-
resenting the set of control points around a rectangle.
N denotes the valence of an extraordinary point. V' is
an invertible matrix whose columns are the eigenvectors
of subdivision matrix. It is a square matrix which has
(2N+8) x (2N+8) elements, and then Cy is also a (2N +8)-
dimensional column vector.

In Equation (2), A is a diagonal matrix containing the
eigenvalues of the subdivision matrix. The ¢-th diagonal el-
ement of A is the eigenvalue of the eigenvector correspond-
ing to the i-th column of the matrix V. X, is called the
coefficient of the eigenbasis function. It has (2N + 8) x 16
elements which depend on the parameter k. b(u,v) is
the vector of the 16 cubic B-spline basis functions at the
two-dimensional parameters (u, v). t,(u,v) is a function
which transforms (u, v) to parameters on Q7. It can be de-
scribed as follows:

tl,n,(u, U) = (QnU -1, 2711}),
tan(u,v) = (2"u —1,2"0 — 1),)
t3n(u,v) = (2"u, 2" — 1).

Now we rewrite Equation (2) as follows:

IN+8 16
s(u,v) = Z pi ()"t Zl‘zjk bi(ten(u,v)), (5
=1 =1

where p; denotes the i-th element of the vector C’o, \; de-
notes the i-th diagonal element of A, x;;; denotes the i-th
row and j-th column element of X}, and b; denotes the j-th
element of the cubic B-spline basis functions.

The partial derivatives with respect to both « and v can
be calculated by partial differentiation of a cubic B-spline
basis function as described in Equation (5). The normal
vector is then calculated from these derivatives.

We define the function); as follows:

16

i, v) = (M) @ik bj(ten(u,0). (6)

j=1
Using v;, Equation (5) can be rewritten as follows:

2N+8

S(ua U) = Z ¢i(ua U) Pi- (7)
=1

¥;(u,v) is called an eigenbasis function. As a result,
the evaluation of a subdivision surface at arbitrary param-
eter value can be treated as a linear combination of p; and

Ui (u,v).
4.2. Inputs for the Algorithm

Our algorithm is executed in a fragment program. The
pre-computed data are stored in the texture as inputs. More-
over, a face id and two parameters v and v are prepared for
each fragment. The reason why a face id is necessary is
that we need to store a face information where a fragment
is rasterized from. This information is used for the texture
lookup in the fragment program.

To calculate a face id and parameters u and v for each
fragment, we prepare in advance a polygon which is an ap-
proximation of the subdivision surface. This polygon can
be created by subdividing the original control polygon sev-
eral times. In the subdivision process, face id and param-
eters of a subdivided polygon can be easily inherited from
those of its original control polygon. Each face of a subdi-
vided polygon is rasterized in the rendering process, and the
parameters of each fragment are also created by a linear in-
terpolation. The face id for each fragment is inherited from
its parent subdivided polygon.

It is desirable that the subdivided polygon is a good ap-
proximation to (the limit surface of) the subdivision surface.
If the polygon is coarse, the geometric error between the
rasterized position of the polygon and the point on subdi-
vision surface calculated by using the rasterized parameters
could be large. This causes an ill effect for the final ren-
dering result. In particular, gaps could be generated on the
mesh because the resulting data computed in each fragment
are rendered as points. In our experiments, however, an
original control polygon subdivided only a few times can
generate a good approximation even if creases or corners
are included.

4.3. Texture Preparation

In this subsection, we will describe how to store the data
to the texture which are needed to compute in the fragment
program. We can say that using Equation (2) directly is too
costly even on the current graphics hardware. This is be-
cause there have too much instruction sets. Consequently,
we calculate C7 A"~ X}, in advance and store it to the tex-
ture instead of storing each CT, A"~1 and X, respectively.
This equation includes the coefficients n and k£ which de-
pend on parameters v and v. Fortunately, the range of val-
ues which is assigned to these two coefficients are limited
because n is defined as follows:

n = [min(—logy(u), —logy(v))| + 1

the number
of faces

the number
of faces |

i
face 2,
face 1
face 0

Figure 4. Procedure of storing data to texture
in the form of two-dimensional tables.

where | x| denotes the largest integer less than z.

To determine the maximum value of n is equivalent to
how small parameters u and v are accepted. If the maxi-
mum value of n is 10, for example, parameters larger than
2,% = ﬁ can be evaluated precisely. Here we set the
maximum value of n as 15. In this setting, parameters larger
than 715 = 51— < 107* can be evaluated. It is enough
in our experiments. The value of % is only 1, 2 and 3.

Stam proposed in [15] that the evaluation of subdivision
surfaces at arbitrary parameter value is regarded as the lin-
ear combination of eigenbasis functions and p;, as shown in
Equation (7). We replace this equation to the linear com-
bination of bi-cubic B-spline basis functions and 16 points
selected from C‘O, which are represented as P;. P; is defined

as follows:

2N+8

P = Z pi(N)" (8

Jj=1

s(u, v) is therefore evaluated as follow:

16
s(u,v) = Pibi(tn(u,v)) 9)
i=1

We store P;(1 < ¢ < 16) of each face to the texture
as inputs. Since P; depends on parameters n and k, all the

suvdivided polygon

parameter
face id

light source texture \

| parameter | face id |
[
FP1
P; texture
/]] N
Nt | "=
n ok bi-cubic B-spline : HER
basis functions I i :
I
partial derivatives of :

r—

bi-cubic B-spline functions

with and v directions

<
-normals
-reflection lines,

final image

Figure 5. Overview of our algorithm on
GPU.FP1 and FP2 denote the fragment pro-
grams.

possible case of P; have to be stored. k has 3 patterns and n
has 15 patterns, therefore 45 patterns of P; are required for
each face. Figure 4 illustrates the concrete example for stor-
ing these patterns. The column corresponds to the number
of faces. The row width is 16 x 45 = 720. The length of the
column is limited by the capability of graphics hardware:
If the number of faces is larger than the limit number, we
use multiple blocks: We store the data in the first block, and
then the consequent data exceeded to the limit are stored in
the neighbor block. Multiple textures can be also used to
store the data exceeded to the limit.

4.4. Algorithm

Figure 5 provides an overview of our algorithm. All the
computations in our algorithm are executed in the fragment
program. The input for our algorithm is described in the
previous subsection.

We prepare a subdivided polygon as an input. Each face

(a)

(b)

Figure 6. Light source textures and their re-
flection lines. (a) lattice pattern (b) regularly
arranged circle pattern.

of the input mesh is decomposed into the set of fragments
in the rasterization process. Each fragment has an inherited
face id and linearly interpolated parameters v and v from
the input mesh. These are once stored in the texture, and
are used in the fragment program to compute positions and
colors. When stored in the texture, we store not the whole
viewport, but the smallest rectangle enclosing the polygon.
This reduces the computational cost of the fragment pro-
gram. Positions and colors are computed by drawing a rect-
angle polygon on pbuffer. The viewport size of pbuffer is
the same as the transferred texture.

Positions are computed in the fragment program as fol-
lows. Firstly, we fetch the parameters and face id from the
transferred texture at the current fragment. By using them,
we select the 16 points from the texture where P; is stored.
The offset to access these points is computed with n and k
in the fragment program. Also, we compute the bi-cubic B-
spline basis functions with these parameters. Then, the po-
sition is computed by linear combination of the basis func-
tion with P;. The result is not only copied to a vertex array
but transferred as the texture to the fragment program which
computes colors.

Colors are computed in another fragment program as fol-
lows. Firstly, we compute the tangent vectors of both direc-
tions u and v by the same way as computing positions. Note

-}
///‘.‘

S

N
3

AR IS
SN S
‘ﬂ 2 ,,tl‘\};:‘) S
) E IR
7/ F TN
/e o) TN
I8 AT &

YA

2/ L

2y aneann

g A\
Ul

©

S
e N (| LS
=y b—--’”"’/&//" N
= .ﬂlfl,;; 77 N 27T L)
1V oy 1T
) Y i \ DA \
,7;’}1"'5 iy, Z/’;"‘E-‘“\“\
=) %/-\\),
= ‘ - .
\\l (/R

=\

Figure 7. Reflection lines with subdivided polygons. From left to right: once, twice and three
times subdivided polygons. (a) Wire-frame display. (b) Calculated by using polygons directly. (c)

Calculated by our algorithm.

that the basis function we use in this fragment program is
differentiated with respect to each direction. Next, we com-
pute a normal vector by using these tangent vectors. Finally
the intersection point is calculated by the method described
in Section 3, and the color is computed. The eye position
and positions of a surface are provided as inputs.

The data in each fragment corresponds to the position
or the color of one vertex. We can obtain the final image
by copying the results of the fragment program to a vertex
array and render this array as points.

5. Results and Discussion

We prepare an image with a finite plane as a light source.
Figure 6 shows two “light” images and the resulting reflec-
tion lines using these images.

Figure 6(a) shows an image of a lattice pattern. The re-

sult using this image is called latticed reflection lines [9].
Figure 6(b) shows an image of regularly arranged circles.
This can be regarded approximately as the reflection of
sphere lights. It has the interesting property that the re-
flected image of a circle in a convex region is an elliptical
shape that stretches towards the principal direction of cur-
vature [6].

It is desirable that the size of the finite plane in object
space is larger than that of the surface. This avoids the case
in which no intersection point can be found.

A calculated reflection line on a surface always has a
width. This is because the width of a light line on an image
is not less than the size of a pixel. The width of a reflection
line depends on the resolution of the image and on the size
of the finite plane in object space. The lower the resolution
of an image is, or the smaller the size of the finite plane is,
the thicker a reflection line is.

The length of a fragment program for calculating reflec-

i

WY
S suuuu

i/

gﬁé:‘:“:\-.!/-lil!'. ! ! =TT || llll||“‘_\\

all

SN

(b)

Figure 8. Close-up view of reflection lines. We
use three times subdivided polygons in this
case. (a) polygon based calculation (b) frag-
ment based calculation.

tion lines is very short. (roughly 30 instruction sets or less).
This means that it has little effect for the whole calculation
time.

Figure 7 shows several results to demonstrate the correct-
ness of our algorithm. Figure 7(a) shows the wire-frame
display results of three polygons; from left to right, once,
twice and three times subdivided polygons from an original
polygon, respectively. Figure 7 (b) shows the results using
these subdivided polygons directly. That is, each vertex has
not only a limit position but also a limit normal vector, and
a position and a normal vector for each fragment is inter-
polated through the rasterization process. Using these posi-
tions and normal vectors, reflection lines are calculated by a
fragment program. It can be seen from the results of Figure

#faces | 300 1,200 | 4,800
get parameter (sec.) | 0.0008 | 0.003 | 0.012

Table 1. The relation between the number of
faces and the time for getting parameters and
face id per fragment.

#fragments | 300x300 | 500x500 | 700x 700
posistion (sec.) 0.03 0.07 0.13
color (sec.) 0.10 0.27 0.52

Table 2. The relation between the number of
processed fragments and the computation
time. Note that "#fragments" does not mean
the window size.

7(b) that the correctness largely depends on the subdivision
level. A three times subdivided polygon is better for the re-
sult than the one subdivided once. Figure 7 (c) shows the
results calculated by our algorithm. Each figure represents
the limit surface and reflection lines on them. Their results
are independent of the levels of subdivision.

In once or twice subdivided polygons, it is not enough to
approximate the limit surface. If the approximation is not
enough, the problem can occur that the positions computed
in the fragment program are different from those of pixels.
This problem yields some gaps on the surface. It is basi-
cally caused by the lack of the data. One solution to address
this problem is that the larger viewport than the actual one
is used. However, using the larger viewport increases the
number of processed fragments. Therefore it is desirable
that the input mesh is fully approximated of the limit sur-
face. Actually in the left of Figure 7(c), we use the 1.72
times larger viewport of actual one. In the middle of Figure
7(c), we use 1.32 times larger viewport. In the case of the
right figure, we can obtain no gapped result by using the
same size of the actual viewport.

Our method is more effective when a viewpoint comes
close to the object. Figure 8 shows the example. Our
method can represent the precise reflection lines, on the
other hand, polygon-based one is not. Especially, it is quite
noticeable on a higher curvature. Our method ensures the
correctness of positions and colors for all of the fragments
because it is per-pixel based evaluation. Figure 9 shows the
results for more complicated polygon with 1776 faces.

We execute our algorithm on Athlon XP 2600+ GeForce
FX 5900 Ultra. Our evaluation consists of four stages. The
first stage is getting parameters and face id per fragment.
The next stage is the calculation of positions and the third
stage calculates colors. The final stage is rendering. When

Figure 9. The result for a large polygon model (“Volkswagen”, courtesy of Leif P. Kobbelt) with 1,776
faces.

considered about the computation time, only the first stage
depends on the number of faces. The rest of three stages de-
pend on the number of fragments, i.e. depend on the view-
port on which the polygon is displayed. Table 1 shows the
computation time of getting parameters and face id. Ta-
ble 2 shows the time for computing positions and colors.
The fragment program which calculates positions consists
of 181 instructions. The one which calculates colors con-
sists of 280 instructions. The time of renderin points is too
fast to ignore it.

We can also calculate reflection lines for other represen-
tations of parametric surfaces (BeZier, B-spline, Coons, and
so on). In these representations the number of instruction
sets of fragment programs for calculating positions and par-
tial derivatives is much lower than those for subdivision sur-
faces.

6. Conclusion and Future Work

In this paper, we propose a method for surface quality
assessment of subdivision surface using reflection lines on
programmable graphics hardware. We have shown that our
method can calculate reflection lines precisely even for low
levels of subdivision polygons. Though the computation of
reflection lines is fast, the time for calculating positions and
color is much slower. The whole process of our algorithm
depends on current graphics hardware. We hope that it will
be improved significantly in the near future.

References

[1] K.-P. Beier and Y. Chen. Highlight line algorithm for real-
time surface quality assessment. Computer Aided Design,
26(4):268-277, 1994.

[2] J. Bolz and P. Schroder. Rapid evaluation of Catmull-Clark
subdivision surfaces. In Proc. the Seventh International

(3]

(4]

(5]

(6]
(7]

8]

(9]

(10]

(11]

[12]

(13]

(14]

Conference on 3D Web Technology (Web3D Symposium),
pages 11-17. ACM Press, New York, 2002.

J. Bolz and P. Schroder. Evaluation of subdivision surfaces
on programmable graphics hardware. submitted for publi-
cation, 2003.

E. Catmull and J. Clark. Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer Aided De-
sign, 10(6):350-355, 1978.

Y. Chen, K.-P. Beier, and D. Papageorgiou. Direct highlight
line modification on NURBS surfaces. Computer Aided Ge-
ometric Design, 14(1):583-601, 1997.

G. Farin. Curves and Surfaces for CAGD. Morgan-
Kaufmann Publishers, 5th edition, 2001.

N. Greene. Environment mapping and other applications of
world projections. IEEE Computer Graphics and Applica-
tions, 6(11):21-29, 1986.

M. Higashi, T. Kushimoto, and M. Hosaka. On formulation
and display for visualizing features and evaluating quality of
free-form surfaces. In Proc. Eurographics *90, pages 299—
309. Elsevier, Amsterdam, 1990.

M. Higashi, T. Saitoh, Y. Watanabe, and Y. Watanabe. Anal-
ysis of aesthetic free-form surfaces by surface edges. In
Proc. Pacific Graphics ’95, pages 294-305. World Scien-
tific, Singapore, 1995.

E. Kaufmann and R. Klass. Smoothing surfaces using reflec-
tion lines for families of splines. Computer Aided Design,
20(2):73-78, 1988.

R. Klass. Correction of local irregularities using reflection
lines. Computer Aided Design, 12(7):411-420, 1980.

C. Loop. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Department of Mathe-
matics, 1987.

J. Loos, G. Greiner, and H.-P. Seidel. Modeling of surfaces
with fair reflection line pattern. In Proc. Shape Modeling In-
ternational '99, pages 106—115. IEEE CS Press, Los Alami-
tos CA, 1999.

W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P.
Flannery. Numerical Recipes in C++: the Art of Scientific
Computing. Cambridge University Press, 2002.

[15]

[16]

(17]

J. Stam. Exact evaluation of Catmull-Clark subdivision sur-
faces at arbitrary parameter values. In Computer Graphics
(Proc. SIGGRAPH 98), pages 395-404. ACM Press, New
York, 1998.

C. Zhang and F.-F. Cheng. Removing local irregularities of
NURBS surfaces by modifying highlight lines. Computer
Aided Design, 30:923-930, Aug. 1998.

D. Zorin and D. Kristjansson. Evaluation of piecewise
smooth subdivision surfaces. The Visual Computer, 18(5—
6):299-315, 2002.

	1 . Introduction
	2 . Related Work
	2.1 . Reflection Lines
	2.2 . Subdivision Surfaces

	3 . Reflection Lines Using GPU
	3.1 . Basic Idea
	3.2 . Algorithm

	4 . Fragment-based Evaluation of Subdivision Surfaces Using GPU
	4.1 . Exact Evaluation of Subdivision Surfaces at Arbitrary Parameter Values
	4.2 . Inputs for the Algorithm
	4.3 . Texture Preparation
	4.4 . Algorithm

	5 . Results and Discussion
	6 . Conclusion and Future Work

