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Fig. 1. Breaking wave reaches three cubical solids floating in its path, where the motion is strongly two-way coupled. Grid texture at the center visualize our
tall grid cells with horizontal adaptivity applied. Notice that cells are dynamically subdivided to adapt to scene complexity, such as at the tips of breaking
waves and in the vicinity of rigid bodies. Also rigid bodies in part intersect with tall cells of different sizes, necessitating our newly devised variational two-way
coupling formulation of rigid bodies. The effective resolution is 512 × 192 × 192.

This paper introduces a novel grid structure that extends tall cell methods for
efficient deep water simulation. Unlike previous tall cell methods, which are
designed to capture all the fine details around liquid surfaces, our approach
subdivides tall cells horizontally, allowing for more aggressive adaptivity and
a significant reduction in the number of cells. The foundation of our method
lies in a new variational formulation of Poisson’s equations for pressure
solve tailored for tall-cell grids, which naturally handles the transition of
variable-sized cells. This variational view not only permits the use of the
efficacy-proven conjugate gradient method but also facilitates monolithic
two-way coupled rigid bodies. The key distinction between our method and
previous general adaptive approaches, such as tetrahedral or octree grids,
is the simplification of adaptive grid construction. Our method performs
grid subdivision in a quadtree fashion, rather than an octree. These 2D cells
are then simply extended vertically to complete the tall cell population. We
demonstrate that this novel form of adaptivity, which we refer to as quadtree
tall cells, delivers superior performance compared to traditional uniform tall
cells.
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1 INTRODUCTION
Large-scale liquid simulation is an important research area in graph-
ics due to its high industry demand and expressive capabilities [Lesser
et al. 2022; Nielsen and Bridson 2016]. Historically, the mainstream
effort has been directed towards tetrahedral grids [Ando et al. 2013;
Batty and Houston 2011; Chentanez et al. 2007; Clausen et al. 2013]
and octree grids [Aanjaneya et al. 2017; Ando and Batty 2020; Fer-
stl et al. 2014; Goldade et al. 2019; Losasso et al. 2004], which can
encompass a wide range of fluid phenomena.
Aside from above, tall-cell grids [Chentanez and Müller 2011;

Chentanez et al. 2014; Irving et al. 2006] are also introduced as
an alternative. Tall-cell grids are more limited compared to above
methods, as they require the presence of gravity to accurately sim-
ulate the motion of liquid. The advantages of tall-cell grids lie in
their simplicity in the structure of grids. Unlike tetrahedral grids
or octrees, cells can be fast populated using the height field. This
significantly reduces grid generation costs while also providing
adaptivity benefits in terms of runtime and memory consumption.

One existing issuewith the tall-cell grids is their limited adaptivity
in the horizontal directions, which we refer to as the xz-plane. In
practice, liquid surfaces can exhibit both localized splashes and calm
regions [Ando and Batty 2020], but one is forced to resolve both
dynamics using the same grid resolution; resulting in inefficiency.
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Resorting to tetrahedral or octree grids remains a promising option;
however, it can become overwhelming in strongly horizontally-
extended liquid scenes.
This paper aims to address this limitation by leveraging the tall-

cell grids. Instead of uniformly distributing the cells on the xz-plane,
we choose to subdivide it in a quadtree fashion while best inheriting
all the merits of tall-cell approaches, such as simplicity and fast grid
population.
In doing so, we also reformulate the pressure solver in a varia-

tional manner. Previous approaches discretize pressure using finite
differences, resulting in either symmetric [Irving et al. 2006] or
asymmetric [Chentanez and Müller 2011] matrix views. While such
approaches may suffice for their needs, they can exhibit significant
complexity when designing adaptive grids like ours, if chosen to do
so. Moreover, they can hinder the seamless integration of two-way
coupled solid dynamics, as interface treatments between fluids and
solids require special care [Batty et al. 2007].

For the remaining components, we adopt the method introduced
by Ando and Batty [2020] to ensure second-order accurate boundary
conditions for free surfaces crossing T-junctions. We also employ
dual contouring [Ju et al. 2002] for surface meshing, both to elimi-
nate potential artifacts at the cell-size transition. In summary, our
contributions are as follows

• Horizontally adaptive tall cells for liquid simulation.
• Variational pressure solver for our quadtree tall cells.
• Two-way coupled rigid bodies within our framework.

We demonstrate that our method achieves a significant acceleration
in runtime compared to an existing tall-cell approach [Irving et al.
2006] and yet remains simple, offering a more accessible alternative
to practitioners than general adaptive grids.

2 PREVIOUS WORK
Tall Cells. In graphics, tall cells are pioneered by Irving et al. [2006]

and further extended for real-time applications by Chentanez and
Müller [2011]. The former approach allocates a thick layer under-
neath the water surfaces consisting of uniform grids, which they
refer to as the optical layer, to resolve dynamics not only for the
surfaces but also for certain depths. Accordingly, the accuracy of
the dynamics can be controlled by specifying the thickness of the
optical layer, and they suggest setting the thickness to 1/4 of the
depth [Irving et al. 2006].
The latter approach extends this concept by developing a fast

novel multigrid solver designed for their slightly modified tall-cell
grid structures, enabling the entire pipeline to efficiently run on the
GPU. To the best of our knowledge, no significant advancements in
tall-cell grids have been reported subsequently. Our method makes
advancement in this field, as we will elaborate in the following
sections. The key difference is that our method employs a variational
framework, while both methods use finite differences.

Surface-Only Water Dynamics. Our method is also pertinent to
the extensive literature on surface-only fluid dynamics. An exam-
ple is the shallow water equations, where the motion of fluid is
simplified under the assumption that pressure varies linearly with
the depth of water [Bridson 2008]. An early work on this subject
in graphics is by Layton and Michiel van de Panne [2002], where

water waves are semi-implicitly solved to maintain stability. This
work has been extended to triangular grids with the explicit sym-
metrization of matrices [Wang et al. 2007]. Beyond the shallow
water equations, researchers have explored methods to reproduce a
wider range of fluid motions using the Boundary Element Method
(BEM). For instance, Keeler and Bridson [2014] employed the BEM
to simulate the motion of vast oceans, assuming that fluid velocity
is approximated by a curl-free potential flow. Huang et al. [2021]
integrated Fluid-Implicit-Particle (FLIP) and BEM to simulate large-
scale ocean scenes. The BEM is also used to simulate the dynamics
of soap [Da et al. 2016], ferrofluids [Huang and Michels 2020] and
fundamental solutions of waves [Schreck et al. 2019]. Some works
adopt similar concepts [Canabal et al. 2016; Loviscach 2002], which
involves distributing dispersion kernels at source points to simulate
propagating waves.

Enriched Surface Dynamics. Rather than approximating the bulk
motions of the Navier-Stokes equations using surface-only vari-
ables, many researchers have concentrated on wave dynamics that
are visually important but too weak to affect the body of water.
Yuksel et al. [2007] introduced the concept of wave particles to
simulate propagating waves on liquid surfaces, with Largangian
particles carrying a single wavelength. This work has been extended
to carry multi-wavelength crests [Jeschke and Wojtan 2017]. Spline
elements are also used to track the moving waves [Jeschke and Wo-
jtan 2015; Skrivan et al. 2020; Thürey et al. 2007]. Surface dynamics
are also solved using Eulerian approaches rather than Lagrangian
elements [Kass and Miller 1990]. Kim et al. [2013] introduced a
closest-point method that solves the wave equations without ex-
plicit surface parameterization by volumetrically approximating the
solution within narrow-banded 3D cells.

Coupled Bulk-Surface Dynamics. Beyond a certain level of vi-
brancy, dynamics on the surfaces begin to exert a noticeable influ-
ence on the motion in the bulk. To achieve this, some works propose
coupling both dynamics, with surfaces being solved using a wave
solver while the bulk employs the Navier-Stokes equations to lever-
age the advantages of both approaches [Schreck and Wojtan 2022;
Thürey et al. 2006]. These coupled approaches are further extended
to surface-dominant cells and bulk particles [Golas et al. 2012], as
well as height fields and secondary particles [Chentanez et al. 2014].

General Spatially Adaptive Methods. Numerous adaptive methods
for fluid simulation exist in graphics. Losasso et al. [2004] propose
the use of an octree data structure to simulate smoke and water.
Tetrahedral meshes have been subsequently devised for simulating
smoke [Feldman et al. 2005; Klingner et al. 2006] and water [Ando
et al. 2013; Batty et al. 2010; Chentanez et al. 2007; Clausen et al.
2013]. In addition to octree and tetrahedral grids, several unique grid
structures have been proposed, including staggered grids [Xiao et al.
2020], chimera grids [English et al. 2013], power particles [de Goes
et al. 2015; Qu et al. 2022; Zhai et al. 2020], simplicial complexes [Mis-
ztal et al. 2010], coarse grid projection [Ando et al. 2015; Lentine
et al. 2010], axis-aligned streched cells [Zhu et al. 2013], overlapping
grids [Dobashi et al. 2008], curvilinear grids [Azevedo and Oliveira
2013; Ibayashi et al. 2020], and a variable-sized SPH [Adams et al.
2007; Solenthaler and Gross 2011; Winchenbach and Kolb 2021].
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In-depth discussions on these methods are beyond the scope of this
paper, and we refer readers to the survey by Manteaux et al. [2017].

3 CHALLENGES IN GRID CONSTRUCTION
Before delving into the details of our method, we would like to
emphasize the challenges associated with constructing spatially-
varying grid cells in prior literature. This also helps to clarify the
motivation behind our work.

To partition the domain of interest into computational elements,
the dihedral angles of the elements, running time, and the number of
elements are some important measurements to evaluate the quality
of the resultant grid construction algorithm [Sorgente et al. 2023].
Failure to adhere to these criteria leads to ill-conditioned systems or
excessive overhead [Gao et al. 2017]. Various approaches have been
proposed to meet these criteria, including variational meshing [Al-
liez et al. 2005], body-centered cubic (BCC) meshes [Ando et al. 2013;
Labelle and Shewchuk 2007; Molino et al. 2003; Wang and Yu 2011],
and others [Hu et al. 2020; Si 2015]. Unfortunately, all of the above
methods require dedicated engineering for high-quality meshing,
which can pose a hefty bottleneck in terms of both runtime and
practicality.

Tall cells, on the one hand, reduce the aforementioned challenges
to nearly negligible levels since all we need is the height field of
water surfaces. Our method employs quadtree subdivision, which,
of course, introduces more complexity than uniform tall cells, but it
remains by far more affordable than the above volumetric adaptive
grid construction methods.

4 METHOD OVERVIEW

4.1 Evaluating Sizing Function
Our method starts with constructing a 2D quadtree grid. This is
accomplished by recursively evaluating a sizing function 𝑓 (𝒙) at the
center of cells in a coarse-to-fine order and deciding whether the cell
must be subdivided into four. In doing this, special care is needed to
avoid rapid coarsening. If the ratio of diameters of two neighboring
cells exceeds two, our variational discretization, to be presented,
may not work as expected due to the numerical reflection arising
from the rapid change in the resolvable accuracy [Söderström et al.
2010a]. One promising solution is to adopt tree balancing [Isaac et al.
2012], but it can be overwhelming for our method. In our method,
we employ an adaptive smoothing [Ando and Batty 2020].

To efficiently evaluate 𝑓 (𝒙), we employ the following strategy.
First, assuming we already have quadtree tall-cells constructed from
the previous step or they are explicitly provided, we evaluate the
sizing function on these cells. Second, we perform a vertical scan for
each column to identify the maximal value. Finally, these maximal
values are flattened onto the xz-plane.

Once again, we would like to emphasize the benefits of quadtree
subdivision. In general, evaluating 𝑓 (𝒙) can be expensive in 3D
coordinates. For example, consider a function 𝑓 (𝒙) defined as the
minimum of distance functions from numbers of source points
of interest (e.g., 𝑓 (𝒙) = min𝑖 |𝒙 − 𝒚𝑖 | where 𝒚𝑖 is a source point)
distributed at random positions. If the source points are scattered
around the cells with high turbulence, we end up evaluating all
the points every time when deciding if a cell should be subdivided.

xz-plane

cut-plane

liquid surface

xy-plane xy-plane

Fig. 2. Quadtree Tall Cell Building Overview: A quadtree subdivided on the
xz-plane (left). Vertical cell extension (middle). Tall cell conversion (right)
and pressure samples (blue dots).

In 3D, this number can be quite high, making brute-force visiting
an impractical solution. Surely, we can make use of approximated
nearest neighbor search (a.k.a ANN) [Mount and Arya 1998], but it
would require rebuilding the k-d tree at every step and tree traversal
for lookup; therefore, it still imposes some notable cost.
As quadtree cells are more manageable than unstructured 3D

grids, we can perform a parallel vertical scan to gather values into a
2D image, allowing for quick lookup for subsequent subdivision.
As for the design of the sizing function, we use the variation in

velocity and surface curvature as suggested by Ando et al. [2013].
However, this can be customized and is subject to the artist’s needs.

4.2 Quadtree Tall-Cell Population
Once a quadtree grid is available, as illustrated in Figure 2 left, we
vertically extend it all the way both to the bottom and to the top,
as shown in the middle. Next, we concatenate vertical cells that
are a few cells away from the surface to form tall cells, both in
the downward and upward directions. Finally, we assign pressure
variables at the centers for cubical cells and at the top and bottom
for tall cells, as illustrated on the right.

For relatively flat water surfaces, the above strategy suffices. How-
ever, in cases where water surfaces exhibit complex topological
changes such as splashes and bubbles, multiple tall cells may be
needed for a single column. In that case, we vertically scan the fluid
cells and transform the connected sequence of cells into tall cells
based on the steps above.
Note that we are aware of the redundant cell allocation and re-

movals in this process. We choose to employ this strategy both to
simplify our grid generation algorithm and for clarification pur-
poses. With some small additional engineering efforts, one should
be able to optimize it and eliminate explicit allocations and scans
by e.g., utilizing virtual cell allocations.

4.3 Variational Pressure Solver
Our method shares many similarities with the method of Ando and
Batty [2020], and as such for brevity we use the same notations for
gradient and divergence operators, among others. Our linear system
for the pressure variables is given by

−[∇]𝑇 [𝑉 ] [𝐴] [𝐹 ] [∇]{𝑝} = −[∇]𝑇 [𝑉 ] [𝐴]{𝒖∗}, (1)

where [∇] and [∇]𝑇 denote discretized gradient and divergence
operators, respectively. [𝐹 ] and [𝐴] are diagonal matrices repre-
senting fluid area-volume fraction near the free surfaces and the
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flux-area fraction near the solids. Finally, {𝑝}, {𝒖∗} and [𝑉 ] are vec-
torized pressure, velocity after the advection and a diagonal matrix
encoding face-cell volumes, respectively. Readers are referred to the
work of Ando and Batty [2020] for a more detailed definition.

The difference from the method of Ando and Batty [2020] lies in
the computation of [∇], [∇]𝑇 , [𝐹 ], [𝐴], and [𝑉 ]. Thus, in the fol-
lowing, we will detail how to compute these operators and diagonal
matrices.

Fig. 3. Pressure Gradi-
ent Operator

4.3.1 Gradient and Area Volume. For
clarity, we will illustrate our algorithm
in 2D, but it should be analogously ex-
tended to 3D as we will explain. Let 𝑝1
and 𝑝2 be a pair of pressure samples on
a tall cell, and 𝑝3 and 𝑝4 be a pair of
pressure samples on an adjacent tall cell
as illustrated in Figure 3. Let the red rec-
tangle between the tall cells be a volume
encapsulating the touching area of the
two cells, which corresponds to area vol-
ume [𝑉 ]. Similarly, let two yellow cir-
cles be a pair of vertically interpolated
pressure samples such that

𝑝left = (1 − 𝑡)𝑝1 + 𝑡𝑝2, (2)
𝑝right = (1 − 𝑠)𝑝3 + 𝑠𝑝4, (3)

where 𝑡 and 𝑠 denote interpolation coefficients, respectively. Finally,
the gradient operator for the horizontal component in this example
is given by

𝜕𝑝

𝜕𝑥
= (𝑝right − 𝑝left)/Δ𝑥, (4)

where Δ𝑥 is the distance between 𝑝right and 𝑝left. For every adjacent
pair of tall cells, we embed (4) into [∇] to complete the construction
of the [∇] operator. (Please note that the denominator of (4) become
1.5Δ𝑥 in Figure 3.)

The intermediate velocity located at the middle of the boundary
of the two adjacent tall cells are formally defined such that

𝒖∗avg =
1

𝐴shared

∬
𝑆shared

𝒖∗𝑑𝑆, (5)

where 𝑆shared and 𝐴shared are the area of the boundary shared by
two neighboring tall cells as illustrated by the red line in Figure 4.

Fig. 4. Tall Cell Collapsing and Being Av-
eraged

Direct evaluation of (5)
would be cumbersome;
instead, we use a sim-
ple averaging technique
on the temporarily col-
lapsed cells, as shown in
Figure 4.

When choosing amid-
dle location on the tall-
cell face, it should be
minded that the gradi-
ent direction should be
aligned with the normal
of the face, as failing to
do so can result in first-order accurate spatial derivatives [Losasso

et al. 2006], leading to spurious artifacts [Batty et al. 2010]. The
divergence operator can be simply constructed by transposing [∇].
This contrasts with the method of Irving et al. [2006], where the
divergence operator needs to be explicitly defined with care such
that the resultant linear system becomes symmetric positive defi-
nite. Also notice that (4) accommodates not only uniform tall cells
but also variable-sized tall cells while retaining this simple format,
which is challenging with finite differences.

4.3.2 Boundary Conditions and Fractions. Fluid and area fractions
corresponding to [𝐹 ] and [𝐴] are computed exactly as mentioned in
Ando and Batty [2020]. For fluid fractions, one can focus solely on
the cells that intersect interfaces, which can be analogously viewed
as octree cells. Using this view, one can compute both the fluid
fraction and enforce the second-order boundary conditions for free
surfaces without making any changes to the original algorithm.
Surface extraction is also straightforward with dual contouring [Ju
et al. 2002], as no special care associated with the tall cells is needed.

4.4 Two-Way Coupled Rigid Bodies
In order to fully harness the benefits of our variational view, we
would like to extend our method to handle two-way coupled rigid
bodies. To this end, we aim to define two linear operators, denoted
as [𝐽trans] and [𝐽rot], that satisfy the following relations

−[𝐽trans]{𝑝} = 𝒇trans =
∬

𝑠

𝑝𝒏𝑑𝑆, (6)

−[𝐽rot]{𝑝} = 𝝉rot =
∬

𝑠

(𝒙 − 𝑿com) × 𝑝𝒏𝑑𝑆, (7)

where 𝒇trans and 𝝉rot are the net forces and torque, respectively,
acting on a rigid body [Batty et al. 2007]. 𝑿com and 𝒏 denote the
center of mass of the rigid body and the surface normal, respectively.
We follow a similar strategy as outlined in Batty et al. [2007] to
transform (6) and (7) into volume integrals and obtain

[𝐽trans]𝑖, 𝑗,𝑘1 = Δ𝑥2 (𝐴′
𝑖+ 1

2 , 𝑗,𝑘
−𝐴′

𝑖− 1
2 , 𝑗,𝑘

), (8)

[𝐽trans]𝑖, 𝑗,𝑘2 = Δ𝑥2 (𝐴′
𝑖, 𝑗+ 1

2 ,𝑘
−𝐴′

𝑖, 𝑗− 1
2 ,𝑘

), (9)

[𝐽trans]𝑖, 𝑗,𝑘3 = Δ𝑥2 (𝐴′
𝑖, 𝑗,𝑘+ 1

2
−𝐴′

𝑖, 𝑗,𝑘− 1
2
), (10)

[𝐽rot]𝑖, 𝑗,𝑘1 = −Δ𝑥2 (𝑧 − 𝑍 ) (𝐴′
𝑖, 𝑗+ 1

2 ,𝑘
−𝐴′

𝑖, 𝑗− 1
2 ,𝑘

)

+Δ𝑥2 (𝑦 − 𝑌 ) (𝐴′
𝑖, 𝑗,𝑘+ 1

2
−𝐴′

𝑖, 𝑗,𝑘− 1
2
),

(11)

[𝐽rot]𝑖, 𝑗,𝑘2 = −Δ𝑥2 (𝑥 − 𝑋 ) (𝐴′
𝑖, 𝑗,𝑘+ 1

2
−𝐴′

𝑖, 𝑗,𝑘− 1
2
)

+Δ𝑥2 (𝑧 − 𝑍 ) (𝐴′
𝑖+ 1

2 , 𝑗,𝑘
−𝐴′

𝑖− 1
2 , 𝑗,𝑘

),
(12)

[𝐽rot]𝑖, 𝑗,𝑘3 = −Δ𝑥2 (𝑦 − 𝑌 ) (𝐴′
𝑖+ 1

2 , 𝑗,𝑘
−𝐴′

𝑖− 1
2 , 𝑗,𝑘

)

+Δ𝑥2 (𝑥 − 𝑋 ) (𝐴′
𝑖, 𝑗+ 1

2 ,𝑘
−𝐴′

𝑖, 𝑗− 1
2 ,𝑘

),
(13)

where 𝐴′ = 1 − 𝐴 and [𝑋,𝑌, 𝑍 ] = 𝑿com. (𝑥,𝑦, 𝑧) is the center
position of a cell (𝑖, 𝑗, 𝑘). [𝐽 ]𝑖, 𝑗,𝑘𝑛 denotes a matrix entry of [𝐽 ] at
𝑛-th row and (𝑖, 𝑗, 𝑘)-th column with respect to the cell (𝑖, 𝑗, 𝑘).
(𝑖, 𝑗, 𝑘)-th column is usually interpreted via a topological encoder
e.g.,𝑚 = 𝑁𝑥𝑁𝑧𝑘 + 𝑁𝑥 𝑗 + 𝑖 where (𝑁𝑥 , 𝑁𝑦, 𝑁𝑧) is a grid resolution.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Quadtree Tall Cells for Eulerian Liquid Simulation • 111:5

Algorithm 1: Our Simulation Loop
1 Function Advance_Step():
2 Save Current Grid and Variables
3 Evaluate Sizing Function // Sec. 4.1

4 Subdivide Quadtree
5 Extend Cells Vertically
6 Advect Velocity and Level Set // Sec. 4.5

7 Advance Rigid Body
8 Convert Cells into Tall Cells // Sec. 4.2

9 Solve Pressure from (1) or (14) // Sec. 4.3, Sec. 4.4

10 Map Pressure onto Cubical Cells
11 Update Velocity and Rigid Body

𝐴′
𝑖+ 1

2 , 𝑗,𝑘
is the area fraction subtracted from one 1−𝐴 of two adjacent

cells, (𝑖, 𝑗, 𝑘) and the cell to its right.
Notably, this is identical to one in Batty et al. [2007], with a differ-

ence being that Δ𝑥 varies as in (4). Finally, we solve the following
new linear system to enable strongly two-way coupled dynamics

Δ𝑡
(
[∇]𝑇 [𝑉 ] [𝐴] [𝐹 ] [∇] + [𝐽 ]𝑇 [𝑀𝑠 ]−1 [𝐽 ]

)
{𝑝}

= [∇]𝑇 [𝑉 ] [𝐴]{𝒖∗} − [𝐽 ]𝑇 {𝒘∗},
(14)

where [𝐽 ] = [𝐽𝑇trans 𝐽𝑇rot]𝑇 and 𝒘∗ is a 6 × 1 vector encoding both
the linear and angular velocity of the rigid body. [𝑀𝑠 ] is a 6×6mass
matrix corresponding to a rigid body touching a fluid as in Batty et
al. [2007]. Notice that we multiply Δ𝑡 on the left-hand side of (14) to
ensure unit consistency. The resulting pressure is subsequently used
for both enforcing incompressibility {𝒖} = {𝒖∗}−Δ𝑡 [𝐹 ] [∇]{𝑝} and
updating the rigid body dynamics using (6) and (7).

4.5 Advection
Our simulation loop adopts operator splitting [Bridson 2008]; thus
requires the updating of two variables: velocity and the level set,
each defined at specific locations on staggered grids. More specifi-
cally, they undergo updates through advection [Foster and Fedkiw
2001]. For the sake of ease of implementation, we employ the semi-
Lagrangian advection method [Stam 1999].
To make this work with our dynamically changing grids, we

employ the strategy proposed in Klinger et al. [2006]; that is, we keep
the grid and variables from the previous step. After constructing
new quadtree tall-cell grids, at every respective sample location (e.g.,
cell centers and face centers), we interpolate velocity from the grid
in the previous step and use it to backtrace the position, which is
then used for interpolating variables of interest. Extrapolation of
variables is handled in the same manner as described in Ando and
Batty [2020].

When advection, the overall structure of cells becomes identical
to that of octree cells. From this stage onwards, we can run the
semi-Lagrangian advection and assign intermediate velocities to
each cell face.

4.6 Simulation Loop
In the above, we described how to evaluate a sizing function, con-
struct quadtree tall-cell grids, advect the level set, compute pressure,
and update velocity. These components are now combined together
to complete our simulation pipeline, which is laid in Algorithm 1.
Note that quadtree tall-cells are mainly used in pressure solve (Line
9 in Algorithm 1) and we share many components with Ando and
Batty [2020] for the rest of operations.

5 RESULTS
For evaluation purposes, we have performed three different tech-
niques: uniform grids [Bridson 2008], tall cells [Irving et al. 2006],
and our quadtree tall cells, all of which are based on our imple-
mentation. Note that we have implemented the method of Irving et
al. [2006] slightly different from the original in that we employ our
variational discretization to facilitate implementation.

Choosing an appropriate pressure solver to evaluate our method
needs careful analysis, as we discuss below.
First, our method ensures the symmetric positive definite linear

system by design through a variational formulation. However, this
does not necessarilymean that our system forms anM-matrix, where
off-diagonal entries are all negative while the diagonal terms remain
positive. In our examples, we find that theMICCG solver by [Bridson
2008] was not the best choice, as we find it works most effectively
when the coefficient matrix is M-Matrix. The ICCG solver provided
by AMGCL [Demidov 2019] works in most cases, but we observe
that, during highly complex moments, it converges poorly and is
prone to stall. Ultimately, we have chosen an ICCG implemented
with minor modifications from [Bridson 2008].1 We employed this
solver to all of our examples with the relative residual of 10−4.

In our implementation, we leveraged the data layout as described
in [Ando and Batty 2020] where all data is stored in layered sparse
grids of different resolutions. Within this structure, all cells in the
vertical direction reside in the same sparse grids. Hence, cache coher-
ence is maximized for vertical scans. We also incorpolate extended
narrow-band FLIP (EXNBFLIP) [Sato et al. 2018] to enrich visual
expression.

Table 1 summarizes the runtime of the above three methods. As
expected, the tall-cell method outperforms uniform grids due to
a significant reduction in the number of degrees of freedom to be
solved, resulting in accelerated convergence. Our method delivers
additional performance gains by further reducing the degrees of
freedom in the xz-plane in a quadtree fashion, which adapts to the
scene’s complexity.
Table 2 summarizes the details of the projection routine for the

three methods mentioned above. We find that uniform tall-cell
method consumesmore iterations to converge than the uniform grid,
but we also find that the uniform tall-cell method converges faster
in practice, due to the reduced grid cell count. The performance
of our method consistently outperforms the above two, achieving
projection times that are 5× to 10× faster.

Figure 7 is the time-varying timing of our method and the refer-
ence simulations. Due to the adaptive nature, the number of grids

1We addressed some missing variables from their MICCG code in the process.
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Fig. 5. Water drop. From left to right: uniform grids, uniformly populated tall cells, our quadtree tall cells, and the top view of our method. Effective resolution
of 2563. Notice that the shapes of both the crown splash and the rising spindles closely resemble each other among the three simulations. On the rightmost
view, cell subdivision is carried out only where it is necessary, resulting in a significant reduction in the number of degrees of freedom.

and the quadtree structure dynamically changes, and thus the com-
putation time per frame also fluctuates accordingly. Here, we would
like to highlight that even at the most challenging moments, our
method remains faster or as fast as tall cells.

Water Drop. Figure 5 shows a common testcase of a spherical
liquid falling into a static pool, creating isotropic splashes. As can
be seen, our method successfully resolves thin crowns and spindles
rising at the center after the impact. On the rightmost column of
Figure 5 is an xz-plane view of the same scene, providing a top
view of the quadtree cell subdivision. This shows that the cells near
the center are more likely to be subdivided as desired. Eventually,
after a certain period of time, the motion of surfaces settles, and the
variation in subdivision also diminishes. This scene was simulated
with Ryzen 9 5950X.

Breaking Dam. Figure 6 is a breaking dam of water with the crest
colliding with multiple static pillars. In this setup, we dictate the
subdivision of cells not only on the visually important surfaces
but also near the static pillars to more effectively reproduce the
water splashes incurred by the waves crashing at the pillars, which
produces animations that are closely similar to that of uniform grids
with a notable performance gain. The right most is a top-down view
of the same scene, illustrating that the subdivision is diagonally
symmetric from the left-bottom to the right-top. We simulated this
scene with Ryzen 9 5950X.

Two-Way Coupled Rigid Bodies. Our representative example of
Figure 1 is two-way coupled rigidbodies gently bobbing at the edge
of water tub. Toward the beginning of the scene, cells near the wave
crashing are more likely to be subdivided, followed by the vicinity
of rigid bodies when the crests reach them, creating intricate waves
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Fig. 6. Breaking dam. From left to right: uniform grids, uniformly populated tall cells, our quadtree tall cells, and the top view of our method. Effective
resolution of 2563. Our method dynamically subdivides cells, focusing on areas near the pillars and other visually significant regions, yet it still produces
animations similar to two reference simulations, all the way from the dam collapse to the returning splashes at a corner.

near the rigid bodies waved by the two-way coupled dynamics. To-
ward the end, the rigid bodies undergo calm motion in harmony
with the motion of water, occasionally intersecting with tall cells of
different sizes. At this stage, cells on the left tends to be coarsened
since waves are smooth and nearly static. This scene was also sim-
ulated with Ryzen 9 5950X. We used BulletPhysics [Coumans and
Bai 2021] for handling collisions between rigid bodies.

Merging Animals. Figure 8 illustrates a scenario where liquid,
shaped as various characters, falls into a static pool, creating com-
plex thin sheets and splashes. Despite the relatively large scale of
the scene, with a resolution of 5123, our method enables efficient
simulation within a reasonable computation time. This simulation
was performed on a Ryzen 9 5950X processor.

6 DISCUSSIONS

Numerical Damping. Our method exhibits visually satisfactory
results for many practical scenarios, except that it inevitably in-
troduces noticeable damping. This limitation is consistent with
previous spatially adaptive methods such as [Ando and Batty 2020]
in that coarse grid approximations tend to wipe out detail flow that
cannot be captured with the cells.

For example, subtle variations in velocity and surface detail may
be lost at cell transitions near T-junctions, partly due to the Nyquist
limit. While not exactly the same, similar artifacts, such as ghost
reflections, are discussed in the Perfectly Matched Layer (PML) con-
figuration [Söderström et al. 2010b]. If preserving both total energy
and surface detail is critical, one may either globally reinject kinetic
energy [Lentine et al. 2011] or maintain high-resolution level set
surfaces, while retaining the coarse grid representations [Goldade
et al. 2016].
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Table 1. Timing breakdown of three methods. The numbers represent seconds on average per step for each computational stage.

Scene Resol. Method Sizing value evaluation Quadtree construction Advection Tall cells construction Projection Extrapolation EXNBFLIP operation Total
Fig. 5 2563 Uniform - - 4.472 - 32.413 1.609 2.853 41.716

Tall - - 4.557 0.970 16.475 2.130 2.865 27.364
Ours 0.070 0.504 0.770 0.549 0.480 0.177 0.836 3.462

Fig. 6 2563 Uniform - - 4.893 - 30.370 1.847 2.768 40.246
Tall - - 4.829 0.987 18.521 2.271 3.153 30.123
Ours 0.395 0.975 1.962 0.696 2.207 1.049 1.517 8.895

Fig. 1 512 × 1922 Uniform - - 5.319 - 38.414 2.824 2.992 57.479
Tall - - 5.266 1.038 22.080 2.845 3.322 41.483
Ours 0.230 1.030 1.755 0.662 4.476 0.765 1.508 12.275

Table 2. The breakdown of projection steps of three representative methods. All numbers are measured as averages per step. The assembled matrix is the sum
of all processes involved in the matrix assembly, including gradient evaluation, divergence computation, and multiplications related to two-way coupling with
rigid bodies (if needed). Residual numbers refers to the absolute residuals in PCG, all recorded using the ∥𝐿∥∞ norm.

Scene Resol. Method Total cells Assemble matrix (seconds) Solve poisson’s equation (seconds) Initial residual Residual Returned Iterations
Fig. 5 2563 Uniform 6779709 2.897 28.456 1.0 × 10−2 1.0 × 10−6 229

Tall 2556400 1.795 12.108 3.3 × 10−2 3.0 × 10−6 264
Ours 126031 0.061 0.318 9.9 × 10−2 8.0 × 10−6 95

Fig. 6 2563 Uniform 6054119 2.918 26.452 3.5 × 10−2 3.0 × 10−6 241
Tall 2828746 2.527 13.529 3.0 × 10−1 2.6 × 10−5 269
Ours 568377 0.339 1.416 4.1 3.5 × 10−4 140

Fig. 1 512 × 1922 Uniform 5347016 5.125 30.777 2.9 × 10−2 3.0 × 10−6 220
Tall 2288191 3.171 15.618 8.3 × 10−2 6.0 × 10−6 252
Ours 316432 0.351 3.529 5.2 × 10−1 4.9 × 10−5 169
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(a) Water drop scene (Fig. 5).
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(b) Breaking dam scene (Fig. 6).
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(c) Two way coupling scene (Fig. 1).

Fig. 7. Timing comparison of three methods. Uniform grids are represented in red, tall cells in blue, and our method in black.

Refinement Oracle. We used surface curvature and variations in
velocity near the liquid surface because our primary interest is the
motion on the surface. We did not consider inner turbulence, as our
tall cells by construction approximate both pressure and velocity
variance linearlywith depth.We note that the strategy of omitting in-
ner turbulence is reportedly effective for visual simulation [Da et al.
2016; Zhai et al. 2020]. Consequently, the refinement oracle should
be simpler than those that consider volumetric variance [Ando and
Batty 2020; Ando et al. 2013].

FLIP. We used an extended narrowband FLIP [Sato et al. 2018],
which resorts to traditional level set methods for coarse grids. Al-
though a more common FLIP or APIC [Jiang et al. 2015] is possible,
distributing uniform particles across the surfaces would not fully
leverage the benefits of our quadtree surface adaptivity. Alterna-
tively, we may seed particles with radii and spacing proportional

to the grid cell size [Ando et al. 2013], but doing so would result in
particle bumpiness when visualized without care, as demonstrated
by [Sato et al. 2018].

Optimal Thickness. The thickness of the thin layer beneath the
liquid surfaces is a major factor in determining the trade-off between
runtime and the overall accuracy of the animation, both for advec-
tion and pressure computation. For example, a thinner layer results
in faster performance, while a thicker layer yields more accurate
results. As suggested by Irving et al. [2006], we have opted for a
thickness of 1/4 of the depth. Selecting an optimal thickness remains
a heuristic, and the designing a dynamically changing thickness for
improved efficiency is a topic we leave for future work.

Linear System Inversion. As we discussed, our linear system solver
departs from an ideal M-matrix, which may limit the choice of
preconditioner for the CG method. Also, we note that our system
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Fig. 8. Merging animals: Various characters fall into the liquid, forming complex thin sheets and splashes. The simulation achieves an effective resolution of
5123 with an average computation time of 41.3 seconds per step.

could be more challenging to invert compared to the uniform tall
cells from the view of condition number, due to the newly introduced
horizontal adaptivity, as the variance of eigenvalues tends to deviate.
Therefore, we believe that designing a good preconditioner would
be a promising future work in further performance improvements.
In particular, our method is based on the quadtree, which should
facilitate the design of a geometric multigrid solver [McAdams et al.
2010]. Nevertheless, we highlight that despite the above challenges,
our approach, with its significantly reduced degrees of freedom,
offers various advantages, including reduced memory allocation
impact, faster advection and a more efficient surface reconstruction.

Memory Allocation Impact. We base our implementation on Ando
and Batty [2020] to fully leverage the benefits of surface reconstruc-
tion and seamless interpolation near T-junctions. For tall cells, as
we discussed in Section 4.2, we concatenate cubical cells to create
tall cells as needed, and conversely, we split them back to the cubi-
cal cells after the pressure solve, enabling the use of Moving Least
Squares (MLS) interpolation [Ando and Batty 2020]. Of course, this
comes at the cost of increased memory allocation and subdivision
overheads. We have chosen this for the sake of implementation sim-
plicity, but it should be straightforward to optimize it to minimize
any explicit allocation and subdivision. For instance, one can subdi-
vide the tall-cells locally on the fly and discard them once either the
interpolation or averaging is completed. Nonetheless, we highlight
that despite the above overheads, our method is still remarkably
faster than alternatives, as seen in Table 1 and Figure 7.

7 CONCLUSIONS
Our quadtree tall-cells can be seen as a sweet spot between the
general adaptive methods, which offer adaptivity but often come
with algorithmic complexity, and tall-cell grids, which are efficient
but lack the horizontal adaptivity needed for certain scenarios. Our
numerical experiments demonstrate that our method is more ef-
ficient than tall-cell methods while still maintaining algorithmic
simplicity.
Our variational pressure solver is more affordable compared to

existing tall-cell methods because once the gradient operator is
computed, the divergence operator becomes readily available as the
transpose of the gradient operator, which facilitates implementation
even without the need for adaptivity. We have also taken advantage
of this variational view to incorporate monolithic two-way coupled

rigid bodies, which to the best of our knowledge has not been
achieved before for tall-cell grids.
We believe that our variational approach opens up the way for

several research avenues in the realm of tall-cell methods, including
coupling with deformables and air dynamics. We are also interested
to explore GPU acceleration for real-time applications.
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