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Abstract

Recently, animations with deforming objects are fre-
quently used in various Computer Graphics applications.
Metamorphosis (or morphing) of three dimensional objects
is one of techniques which realize a shape transformation
between existing two or more objects. We present a new al-
gorithm for 3D geometric metamorphosis between two ob-
jects based on Harmonic Map. Our algorithm is applica-
ble for arbitrary polyhedra that are homeomorphic to the
three dimensional sphere or the two dimensional disk. In
our algorithm, each of two 3D objects is first embedded to
the circular disk on the plane. This embedded model has
the same graph structure as its 3D objects. By overlapping
those two embedded models, we can establish correspon-
dence between the two objects. Using this correspondence,
intermediate objects between two objects are easily gener-
ated. The user only specifies a boundary loop on an object
and a vertex on that boundary, and which control the inter-
polation.

1 Introduction

Image metamorphosis, or image morphing, is a popular
technique for creating a smooth transition between two im-
ages by interpolating both color information and geometric
shapes approximately [1, 9, 15]. These techniques have a
number of advantages, but only in the case that underlying
both objects in images don’t move, or eye positions are not
changed when two metamorphosis images are created by
rendering.

Therefore, 3D metamorphosis (morphing), direct geo-
metric interpolation of two 3D objects, has become one of
active research themes in recent years.

Lerios et al. [10] extended Beier’s feature-based image
metamorphosis method [1] to volume representation. Two
objects are translated into volumes, and each corresponding
pair of volume values for volumes is interpolated accord-

ing to “feature element pairs”, which must be defined by
the user. This method has also been presented for alter-
ing the topology of the surface mesh during transformation.
However, the intermediate shape is represented as a volume,
extraction to isosurface by such as Marching Cube method
[11] is required for getting polygonal surfaces. Then, the
extracted objects don’t have smooth surfaces.

Kent et al. [8] offer an algorithm for the metamorphosis
of polyhedral objects topologically equivalent to a sphere.
First, two objects are mapped into a sphere, and are merged
by clipping one sphere to another. Then a new shape which
has connectivity information (vertices, edges, and faces) of
two objects is created. However this method is applicable
only for star-shaped, swept or revolutionary objects.

Parent [13] presents a recursive algorithm which auto-
matically finds correspondences of surfaces between two
objects of equivalent topology. This algorithm uses several
sheets for covering the whole shape of the object. Those
two objects must have the equal number of sheets. The
boundary of sheets is composed of edges of the object. Ob-
jects of genus G are automatically subdivided into 2(G+1)
sheets. Each sheet is recursively subdivided up to a face
level. Vertex-to-vertex interpolations and thus deformations
between two objects are completely established.

Delingette et al. [4] use a simplex mesh, and propose ba-
sic mesh operations to alter the shape topology. The inter-
polation was performed using a physically-based deforma-
tion approach, using a method derived from a data fitting
process.

Decarlo et al. [3] describe another framework for the
metamorphosis between two objects which have different
topologies, for example, from a sphere to a torus. The user
controls the transformation by specifying a sparse control
mesh on each surface and by associating each face in one
control mesh with that in the other. In this method, the user
has to create control meshes by considering how to trans-
form from one object to another. Therefore, the more com-
plicated shape is, the harder users create control meshes.

In this paper, a new 3D metamorphosis algorithm based



on Harmonic Map is presented. The main contributions of
our algorithm are as follows:

• Metamorphosis between two arbitrary objects, which
have the same topology as a sphere or a disk, is avail-
able.

• User only has to specify a boundary in each object.

• Numerically stable and fast computation of correspon-
dence are presented.

This paper is partitioned into the following sections. Sec-
tion 2 describes an overview of our method for 3D meta-
morphosis based on Harmonic Map. In this section we
overviews the algorithm, and explains mathematical back-
ground of harmonic map as an internal structure. Section
3 shows how to realize 3D metamorphosis. In this section
we presents an algorithm for creating a new embeddings by
merging two 2D embeddings generated from 3D objects,
and shows a method for interpolation between two objects.
Section 4 describes graphical user interface for an efficient
implementation of our method, and discusses our results.
We conclude with suggestions for future work and applica-
tions in Section 5.

2 Overview and Harmonic Map

2.1 Overview

In our research, we handle two 2-manifold objects which
are topologically equivalent to a sphere, or to a disk. These
objects are represented as a triangular mesh, or a polyhe-
dron with triangular faces. We also assume that these two
objects have the same topology. Hereafter we call them the
source object M1 and the target object M2.

An approach to transforming from M1 to M2 is usually
divided the problem into two steps. The first step is to es-
tablish a correspondence from each point of M1 to a point
of M2. Once this correspondence is established, in the next
step a series of intermediate objects are created by interpo-
lating corresponding points from their original position to
the target. These steps are called correspondence problem
and interpolation problem respectively. The algorithm we
suggest is referred to mainly the former issue.

Our algorithm for finding correspondence begins to de-
velop M1 and M2 to a two dimensional unit disk D2 and
create embeddings by Harmonic Map. These 2D embed-
dings, called H1 and H2, have the same connectivity1as
M1 and M2 respectively, i.e. adjacent relations of ver-
tices, edges, and faces are preserved. Figure 1. shows an

1we use a word connectivity to denote a vertex/edge/face graph of a
polygon.
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Figure 1. A overview of our method for estab-
lishing 3D geometric metamorphosis.

overview for establishing correspondence between two ob-
jects. For given two objects M1 and M2, 2D objects, re-
spectively H1 and H2, are created by mapping into a unit
disk using Harmonic Map.

Next, these two embeddings are merged and a new object
Hc is created which has connectivity inherited from both
two objects and defines one-to-one correspondence between
each position of M1 to that of M2. Since Hc has not only
the connectivity of H1(M1), but also that of H2(M2). The
correspondence between H1 and H2 (and thus between M1

and M2 ) is established.
In the same way as most of previously addressed works,

our method for solving the correspondence problem will be
based on surgery of connectivity. That is, to create a new
object which has a blended connectivity of both two objects
(or those projects) , it is nessessary to subdivide those origi-
nal faces, and to create new vertices/edges/faces, then mesh
connectivities are changed. In our notation, a new object
corresponds to Hc. These operations will be implemented
geometically, that causes to some numerical unstabilities.
Our method can avoid such unstabilities when creating cor-



respondences as described later (Section.3.1).
By using Hc, continuous intermediate objects are created

by interpolation. To establish an interpolation between M1

and M2, we use a simple linear interpolation technique.
Note that these two embeddings are used for internal data

structure, whose related calculation is implicitly processed.
The user specifies only correspondence information on the
boundary of Harmonic Map as described later.

2.2 Harmonic Map

In this subsection, we discuss about the mathematical
background and a method for mapping from an object M
in R3 to a unit circle H in R2.

Harmonic Map, h : M → H is one of the mapping
that realizes embedding from a topological disk to a planar
graph, which has a property to minimize metric dispersion
2 ( see [2] about other mathematical terminologies).

To construct this embedding, we adopted a method pro-
posed by Eck et al. [5]. Strictly speaking, Eck’s mapping
method is a piecewise linear approximation method for re-
alizing embedding from M to H. A similar method is pro-
posed by Marillot et al. [12]. The reason why we adopt
Eck’s embedding method is that stable and fast embedding
can be established.

Eck’s embedding method is established in the following
steps: First, n vertices, which make up a boundary segment
of H , are positioned on the disk (the boundary of D2) in
R2 whose center point is the origin, so that angles between
two boundary vertices are proportional to edge lengths con-
nected to those vertices. The positions of the rest of the ver-
tices are calculated so that the total energy Eharm is min-
imized. Eharm can be represented as a sum of the energy
of a configuration of springs with one spring placed along
each edge of M:

Eharm(v) =
1

2

∑
{i,j}∈Edges(H)

κi,j{||vi − vj ||}2, (1)

where i, j denote vertices, vi,vj denote their positions in H
and v is the set of vi. Edges(H) denotes the set of edges
in H and {i, j} is an edge connecting vertices i and j. κi,j

denotes a spring constant for edge {i, j}, and is calculated
as follows. For each edge {i, j}, let li,j denote its length as
measured in M. For each face {i, j, k}, let Ai,j,k denote its
area, again as measured in M. For each interior edge {i, j}
incident to two faces {i, j, k1}, {i, j, k2}:

κi,j =
li,k1

2 + lj,k1

2 − li,j
2

Ai,j,k1

+
li,k2

2 + lj,k2

2 − li,j
2

Ai,j,k2

. (2)

2Metric dispersion means a measure of distortion, i.e. the extent to
which a map stretches regions of small diameter in D2.
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Figure 2. Harmonic Map: (a) a bunny model.
(b) Harmonic Map.

A unique solution that minimizes Eharm can be found
by solving a sparse linear system ∇Eharm = 0, where
∇Eharm is the gradient of Eharm over v, because Eharm

is a positive quadratic function over vertex positions in H .
To solve the gradient of Eharm, x, y components of v are
listed in order and a 2N dimensional vector V is defined as
follows:

V ≡ (v1x, v1y, v2x, v2y, ..., vNx, vNy), (3)

where N denotes the number of vertices. Eharm is
quadratic form over every component in V, it can be repre-
sented as a form Eharm = VTHV . Then the gradient of
Eharm can be expressed as ∇Eharm = ∂Eharm/∂V.

Moreover vertices on the boundary are fixed. To solve a
linear system, we first divide a variable vector V into two
parts, a free part Vα and a fixed part Vβ , and the constant
matrix H is also divided accordingly. Thus, an energy func-
tion Eharm is rewritten as follows:

Eharm =
[
VαT VβT

] [Hαα Hαβ

Hβα Hββ

] [
Vα

Vβ

]
. (4)

As this energy function is constant for fixed parts, we
only solve a linear equation from the gradient ∇Eharm over
free parts Vα to minimize Eharm:

∇Eharm =
∂Eharm

∂Vα
= 2HααVα + 2HαβVβ = 0. (5)

Figure 2. shows an example of this embedding method.
An original 3D “bunny” model (Figure 2. (a)) has a closed
boundary segment along its neck. 17 vertices consisting of
a boundary segment are positioned on a unit circle in R2.
Faces of the original object are developed into the disk with-
out self-intersection, no matter whether an object has con-
vex region or concave region. For example, the result (Fig-
ure 2. (b)) shows that bunny’s ears which include concave
regions are successfully developed into the disk.
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Figure 3. Registration of Harmonic Maps.

3 Metamorphosis Based on Harmonic Map

3.1 Find Surface Correspondences

In the preceding section, 2D embeddings H1,H2 from
3D objects M1,M2 were generated respectively. Each of
two embeddings has the same connectivity as its 3D object.
This subsection describes how to create new embedding Hc

by merging H1 and H2. Hc has a combined connectivity of
those two embeddings H1,H2, and as a result, M1,M2.
Moreover, correspondences from arbitrary points of to the
source object to those to the target object are also estab-
lished in Hc.

Kent et al. [8] has proposed a similar method. The dif-
ference between our method to their method is that we take
into account coincidence issues. Their method assumes that
no embedded vertices of the two objects are coincident and
that no embedded vertex of the source object lies on a pro-
jected edge of the target object. Our method can handle
these coincident issues. This is important for avoiding nu-
merical unstability which frequently occurs from these co-
incidence cases especially when objects have a number of
faces.

The construction of Hc consists of four steps.
The first step rotates H1 (or H2) around the center of

D2 so that an embedded vertex of H1 selected by a user
(hereafter we call it boundary control vertex) is coincident
with that in H2 (Figure 3).

The second step calculates corresponding 3D positions
in M1 and M2 of each vertex at H1 and H2. First, to
calculate 3D position at M2 for each vertex v1

m in H1,
we search a face at H2 that v1

m is included. Let v1
m,v2

m

be corresponding 3D positions of v1
m at M1,M2 respec-

tively. When v1
m is included in a face f = {i, j, k} of H2, a

barycentric coordinate (u, v, w) of v1
m for f is calculated as

shown in Figure 4. Using this coordinate, a corresponding
3D position v2

m of a vertex v1
m over M2 is calculated as

follows:

v2
m = uv2

i + vv2
j + wv2

k, (6)

u+ v + w = 1.

( u, v, w )
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Figure 4. Mapping vertices in H1 to H2.

In a similar way, for each vertex in H2 its corresponding
3D position at M1 is calculated. To speed up the searching
of a face including a vertex, we use a spatial partitioning
data structure such as the quad-tree data structure [6], then
the search is performed in O(n log n) time.

Especially vertices near the boundary are not included
any faces can exist (such as vn

j in Figure 4). For these ver-
tices, we calculate a 3D position by using barycentric coor-
dinates of the face which has the nearest distance from its
edges.

One of the reason why a calculation failure by numeri-
cal errors occurs is a coincidence issue. There are cases in
which a vertex in H1 and a vertex in H2 are as being lo-
cated nearly at the same position, or in which a vertex of
one embedding is as being nearly on an edge of the other
embedding (Figure 5) .

To solve this issue, we first consider two vertices of H1

and H2 within a threshold distance to be coincident. After
the search of all coincident vertices, we re-calculate H1,H2

again with coincident vertices fixed. Each position of coin-
cident vertices is set to an average of their incident vertices.
When H1 and H2 are re-calculated, we can again use the
energy function (Equation (4)). In Equation (4), the number
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Figure 5. Coincidence issues: (a) two ver-
tices in H1 and H2 have same position. (b)
a vertex in H1 is on a edge in H2 (an opposite
case can be done).

of rows of Vβ is increased. These operations are repeated
and terminated if no coincident vertices are generated. The
process dealing with the case in which a vertex of one em-
bedding is on an edge of the other embedding is also real-
ized by similar substeps. In this case, the boundary vertices
of an associated edge are fixed. Moreover, the relative po-
sition of a vertex to the edge is preserved as a parametric
form, and a new fixed position is calculated using this para-
metric value.

The third step investigates edge-to-edge intersection be-
tween edges of H1 and those of H2. If an intersection is
found, both edges are divided each other at this intersection
point. This process is also established in O(n log n) time
by using the spatial partitioning data structure.

Hc generated by the above step is composed of vertices
and edges, but has no triangular faces. The last step gen-
erates triangular faces in Hc (Figure 6). First at every ver-
tex, edges incident to the vertex are sorted in the counter-
clockwise order. A new face f c = {i, j, k} is generated by
using two continuous edges ei = {i, k} and ej = {j, k}. If
there is no edge between j and k, a new edge {j, k} is cre-
ated simultaneously and is added to the edge-list of vertices
j and k. This operation continues until all of edges in Hc

have a face on both sides. This greedy-like operation exe-
cutes in O(n) time (A simple proof that single time search
of vertices which have a list of neighboring edges in clock-
wise or counter-clockwise order makes covering all of faces
in Hc is described in [2]).

For objects which are topologically equivalent to a
sphere, two embeddings are generated over each object. In
this case, we can apply an above approach to each of two
pairs of embeddings H1 and H2 respectively, then two Hc

are generated.

3.2 Interpolation

An interpolation between the source object M1 to the
target object M2 is realized by applying a simple linear

Figure 6. A method for creating a new object
Hc from H1 and H2

no name

Figure 7. Graphical User Interface

method. Let vc
m(m : 1 . . . N c) be a 3D position of a vertex

vc
m in Hc, where N c denotes the number of vertices in Hc.

For any time t ∈ [0, 1], vc
m are calculated using v1

m and v2
m

as follows:

vc
m = (1− t)v1

m + tv2
m. (7)

4 Results

4.1 User Interface

Based on the methods described in the preceding sec-
tions, we developed a prototype system on a Sillicon Graph-
ics workstation. Figure 7. shows the layout of the user-
interface. This user-interface has two windows. The left
window displays the source object, and the right displays
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Figure 8. (a) “Volkswagen Golf” model. (b)
“Porsche 911” model.

the target object. Users can interactively operate trans-
formations, rotations, scalings of objects by a mouse. Of
course, these objects are located on the same coordinate sys-
tem. Moreover, users can check a transition from the source
object to the target object by this system.

To establish the 3D metamorphosis method described
above, the following operations must be done by users:

Boundary loop specification To calculate embedding de-
scribed as a subsection 2.2, users must specify a
boundary loop on both objects. Each boundary loop
is composed of edges of the objects, and must contain
more than three vertices. Directions of two loops must
be same directions.

A boundary control vertex specification A vertex on
each boundary loop must be specified. Because
these two vertices define the relative position of the
two boundary loops. These vertices are used in the
subsection 3.1.

In both original objects in Figure 7., bold lines denote
boundary loops and filled rectangle marks denote boundary
control vertices.

4.2 Examples

We first demonstrate two metamorphosis examples be-
tween a golf club model (#vertices: 149, #faces: 287) and
an ear-phone model (#vertices: 245, #faces: 477). Both two
models are topologically equivalent to the sphere, and are
generated by Hoppe’s surface reconstruction and simplifi-
cation method [7] from range images. Each of both objects
has a unique center point (an average of center of balances
of faces) which is located near to the origin of the world
coordinate system.

Figure 9. (a) shows a sequence of metamorphosis using
user-specified boundary loops and boundary control ver-
tices illustrated in Figure 7. Figure 9. (b) shows another
sequence of metamorphosis. In this metamorphosis, only
a boundary control vertex of ear-phone model is changed
(to be that opposite side of the boundary loop). In both ex-
amples, each of Hc was obtained within a second (MIPS

R4400 250MHz). The calculation is so fast that we can
interactively create more fine results by some changes of
transformations, rotations or scaling of only one object of
the two.

The other metamorphosis is made between a “Volkswa-
gen Golf” model (Figure 8. (a), #vertices: 2978, #faces:
5798) and “Porsche 911” model (Figure 8. (b),#vertices:
1955, #faces: 3765). Both two models are topologically
equivalent to a disk. Figure 10. shows result of metamor-
phosis. Hc (#vertices: 16909, #faces: 32101) was obtained
in about 46.0 seconds.

One problem that arises during the interpolation is that
an intermediate object can have self-intersections. It seems
quite difficult to avoid such self-intersections. Because, for
example, we consider metamorphosis between certain two
objects without such intersection. However if one of these
objects is transformed, there is no guarantee that intermedi-
ate shapes during the interpolation between two objects that
are at new locations are not self-intersected. That is, loca-
tions of the object have an effect on the self-intersections of
intermediate objects. Thus whether these self-intersections
are permitted or not depends on the application.

5 Conclusion and Future Work

We described a method for three dimensional geometric
metamorphosis based on Harmonic Map for any two ob-
jects which are topologically equivalent to a sphere or to
a disk. Interpolation can be controlled by specifing only a
boundary loop and a vertex on the boundary. This method
is executed so fast that finer control of the interpolation can
also be achieved.

We think that the following three extensions are effective
for interactive control of the interpolation:

• The number of boundary control vertices is limited.
For more complicated objects, an extension for some
local shape control have to be needed. For example, in
metamorphosis between one person to the other per-
son, we may wish local controls so that the right arm
of one person is transformed to that of the other person.

• All of vertices at a correspondence object are trans-
formed simultaneously from t = 0 (object A) to t = 1
(object B). It is desired that only a part of a object is
transformed, while the rest of it is not changed.

• The number of faces of Hc is greatly increased. There-
fore, it is quite slow to display animation during meta-
morphosis. To establish real-time animation of meta-
morphosis, a method for decreasing number of faces
without losing surface features of the original objects
are needed. Many approaches such as [7] address sur-
face simplification.
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Figure 9. (a) “golf club” to “phone” metamorphosis. (b) “golf club” to “phone” metamorphosis with
a user-specified vertex on a loop of ear-phone model is changed.

• Our method can be referred only the correspondence
problem. We use a linear method for the interpo-
lation problem, and we know our method can cause
some problems (self intersection, shape distortion, and
so on), and we know that some approaches address
this problem ( [14] for 2D polygon case, [16] for 3D
polyhedral polygon case). Unfortunatelly, these ap-
proaches are useful only for the case that two models
are similar shape. We are going to find a interpolation
algorithm that can work well with our correspondence
algorithm.
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