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Abstract
We present a novel approach for shading photorealistic hair animation, which is the essential visual element for depicting real-
istic hairs of virtual characters. Our model is able to shade high-quality hairs quickly by extending the conditional Generative
Adversarial Networks. Furthermore, our method is much faster than the previous onerous rendering algorithms and produces
fewer artifacts than other neural image translation methods. In this work, we provide a novel energy-conserving hair shading
model, which retains the vast majority of semi-transparent appearances and exactly produces the interaction with lights of the
scene. Our method is effortless to implement, faster and computationally more efficient than previous algorithms.

CCS Concepts
• Computing methodologies → Image-based rendering; Neural networks;

1. Introduction

Photorealistic hair rendering is one of the first noticeable aspects
of virtual characters that conveys stunning visual satisfaction. Hair
structure and texture are conceived with a certain personality to im-
pressive virtual characters. However, current real-time hair render-
ing approaches produce unrealistic output and tend to be artificial.
As we know, humans generally have numerous strands of hair that
form an extremely complicated geometric structure. Each fiber has
a complex shape, especially in the case of long hair. Therefore, it
is quite hard to represent each and every hair detail accurately by
using any of the available modeling schemes. High-quality hair ren-
dering has several challenging problems that are difficult to solve,
and pose as barriers to achieve realistic appearances. Three main
properties need to be taken into account: single scattering, multi-
ple scattering, and thin visibility. However, rendering hairs with all
of these properties in mind is computationally expensive. To find a
way to resolve the contradiction between performance and quality,
we introduce a novel method to achieve photorealistic hair anima-
tion, where high-performance hair and high-quality hair are both
provided as references. Current machine learning researches have
made great progress in image translation, which can translate im-
ages from one domain to another. Similarly, our key idea is to train
a generator, to transfer low-quality hair shading images to photo-
realistic hair shading ones. By consolidating current researches on
image translation, our method applies an unsupervised model to
achieve photorealistic hair shading. The next challenge is keeping
the results temporally coherent. Because our application scenarios
comprise of a set of frame sequences, the temporal coherence prob-
lem is a gap that we must bridge.

This work is based on conditional Generative Adversarial Net-
works (cGAN), and is also inspired by recent style transfer re-
searches. We propose here an unsupervised learning method, which
builds on the Cycle-GAN [ZPIE17a] architecture. In our applica-
tion, the Cycle-GAN directly applied to hair shading transfer comes
with a temporal unstable problem that yields abnormal highlight
appearances. To resolve this problem, other modules are added such
as temporal coherence modules and highlight correction modules.

2. Related Work

Hair rendering. An early typical technology in hair rendering
was proposed by Kajiya et al. [KK89, YTJR15]. This model uses
a single hair fiber for scattering light and is composed of a dif-
fuse term and a specular term. Because of the simplicity of this
model, it is widely used in real-time applications such as games
or interactive movies. However, this method results in a flat hair
due to inadequate prediction of the azimuthal dependence of the
scattering intensity and its diffusion term. Thereafter, Marschner
et al. [MJC∗03] proposed a model that treats each hair fiber as a
translucent cylinder.

On the other hand, several simplified hair rendering models were
proposed for real-time scenes. Zinke [Zin08] designed a model to
handle simple light sources, but this model does not directly con-
sider the light integration and transport complexities under envi-
ronment lighting. Ren et al. [RZL∗10] proposed an algorithm for
real-time hair rendering with both single and multiple scattering
effects under complex environment lighting. This method approxi-
mates the environment light by a set of spherical radial basis func-
tions. Erik et al. [JCLR19] presented an approximation of strand-
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Figure 1: The left figure is rendered by the fast shading model,
the material consists of roughness, highlight size and whiteness at-
tributes. The right figure is rendered by state-of-the-art reflectance
model based on d’Eon and a Zinke’s model. Even in the same scene,
illumination appearances are totally different. It means that our
method cannot apply supervised learning.

based hair for hybrid hair rendering. All of these methods do not
sufficiently consider significant phenomena such as directionality
of multiple scattering, inter-reflections, subtle blurring and color-
shifting effects.

General Style Transfer. A variety of works addressed the gen-
eral style transfer in the past. Inspired by recent advances of GANs
[GPAM∗14], various types of advance style transfer methods based
on the image-to-image translation [GEB16] have been proposed.
Isola et al. [IZZE17] pioneeringly proposed a general purpose solu-
tion that leverages cGANs for image-to-image translation called as
Pix2pix-GAN. This method is widely applied in many applications
such as semantic labels and edges to photos. As an extension of this
method in unsupervised learning, Cycle-GAN [ZPIE17b] was in-
troduced for achieving bijective consistency between two domains,
thereby providing photorealistic and diverse results.

As a method which uses a Cycle-GAN for video-to-video trans-
lation, Aayush et al. [BMRS18] proposed Recycle-GAN, which ap-
plies a predictor to synthesize the next frame as shown in Figure.
2 (b). This method achieves the temporal coherence for video style
transfer. Yang et al. [CPY∗19] also devised an unpaired video-to-
video translation based on Aayush’s method as shown in Figure. 2
(c). They use the FlowNet to generate an optical flow instead of the
recurrent temporal predictor in [BMRS18].

In this paper, we extend a Cycle-GAN to photorealistic hair
transfer, which is faster than previous offline hair rendering. Instead
of the predictor of Recycle-GAN and the FlowNet of Mocycle-
GAN, we directly apply the motion vectors generated from the
rendering pipeline to predict the next frame. In addition, the high-
light correction module is also introduced in our model. Lastly, our
work uses reference images from the target domain to synthesize
the specified desired hair appearances.

3. Our Model

Figure 1 (a) and (b) denote images rendered by using a fast shad-
ing model and a high-quality reflectance model in the same light-
ing environment, respectively. Obviously, it can be shown that the
highlight appearance is totally different between two images.

Suppose we use Pix2pix-GAN to train our model and the Fig-
ure 1 (b) is taken as the ground truth, the neural network will tend
to learn a mapping that translates the highlight appearance from
Figure 1 (a) to Figure 1 (b). However, the correct mapping in the
training stage does not mean that this map is also correct in the
inference stage. Even though highlight appearances of the ground
truth is correct in this case, the trained mapping is still unstable
and will cause unpredictable inference results. Because in differ-
ent scenes, the highlight position and appearances are too complex
and irregular to build a correct mapping between the hair image
rendered by a fast model and a high-quality model. That is to say,
in the inference stage, if the lighting or position or viewpoint is
slightly changed, the trained model would fail to map the correct
highlight position and appearance. Above all, in this application,
the hair rendered by a high-quality model like Figure 1 (b) can-
not be treated as the ground truth. This is why we choose to use
Cycle-GAN as the unsupervised model.

We also apply a small number of references as styles, which
comes from the target domain. In the following section, we will
show how the references affect the results by the same input. Our
model would need to know where is the appropriate highlight area;
otherwise, it could generate wrong highlight appearance in the test
and applications. For this reason, we formulate a specular generator
to extract a specular map (highlight map) from RGB images. By us-
ing this generator, the highlighted area could be constrained in the
appropriate position that is close to the input highlighted area. Fur-
thermore, the temporal coherence always inhibits the video style
transfer. In contrast to conventional complicated methods, our ap-
proach directly uses the motion vector extracted from the rendering
pipeline to predict the next frame. An illustration of the overall net-
work structure is depicted in Figure 2.

The original Cycle-GAN uses two generators to map between
domain X and domain Y by the adversarial loss. Otherwise, the
cycle consistency loss also constrains the mapping to be the one-
to-one mapping, which forces different samples in the source do-
main to translate in the target domain. That is to say, Cycle-GAN
achieves a bijective mapping between two domains. On the other
hand, unlike Cycle-GAN, our model builds a feedforward hair
shading transformation network. We firstly introduce the reference
to the adversarial and cycle consistency losses.It should be ob-
served in the training or inference stage, whether the reference con-
sists of only one image obtained from the corresponding domain for
one kind of hairstyle. These losses constrain the results of GX and
GY according to the reference: rx and ry which come from the cor-
responding domain X and Y . The adversarial loss for GX and GY
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(a) Cycle-GAN (b) Recycle-GAN (c) Mocycle-GAN (d) Ours

Figure 2: (a) Cycle-GAN uses two generators (GX and GY ) to map between domain X and domain Y by the adversarial loss and cycle
consistency loss. (b) Recycle-GAN introduces predictors (PX and PY ) to synthesize the future frame for ensuring temporal coherence. (c)
Mocycle-GAN utilizes generated optical flows ( fx and fy) to predict the future frame by warping the current frame. (d) Instead of generated
optical flows, we introduce the more precise motion vector (mx and my) to predict the future frame and the highlight constraint to keep the
faithful illumination appearances by the pre-trained specular generator GS.

Figure 3: In our pipeline, the hair RGB is extracted before the
merging stage and imported to the trained generator. The output
are synthesized photorealistic hair RGB that is sent back to the
merging stage.

are:

LGAN(GX ,DY ,X ,Y ) =Ey∼PY [logDY (y)]

+Ex∼PX ,ry∼PY [log(1−DY (GX (x,ry))], (1)

LGAN(GY ,DX ,X ,Y ) =Ex∼PX [logDX (x)]

+Ey∼PY ,rx∼PX [log(1−DX (GY (y,rx))]. (2)

The references are also applied in the cycle consistency loss:

Lcyc(GX ,GY ) =Ex∼PX [||GY (GX (x,ry),rx)− x||1]
+Ey∼PY [||GX (GY (y,rx),ry)− y||1].

(3)

A fundamental weakness of the Cycle-GAN model is that it
learns mapping only at the frame level. The hairstyle in 3D ani-
mation is represented by a contiguous frame sequence. So the gen-
erator must learn to further achieve temporal coherence mapping
to ensure smooth visual appearance in contiguous frames. Previous
researches based on Recycle-GAN [BMRS18] and Mocycle-GAN
[CPY∗19] were proposed. Both methods predict future frames by
training a temporal predictor or an optical flow predictor. However,
Recycle-GAN does not apply the motion information from adjacent
frames to promote video-to-video translation. Mocycle-GAN ex-
plicitly models motion across frames with optical flow, but the op-
tical flow is predicted by another trained FlowNet. This will cause
deviations in optical flow and distortions occur in the warping step.

Unlike previous researches, we propose a method that also uti-
lizes the motion information, which is rendered by the graphics
pipeline instead of an additional neural network. In our approach,

this motion information is called motion vector. In the graphics
pipeline, the renderer will encode a 2D vector representing the ob-
ject motion of X-axis as green and Y-axis as red. Since the motion
vector is directly generated from the pipeline, it can be undoubtedly
regarded as a very accurate optical flow. By the motion vector, the
synthetic frame can be warped with the transferred motion to the
subsequent frame.

We give here two contiguous frames from domain X : xt and
xt+1. As mentioned above, xt and xt+1 are reconstructed as
GY (GX (xt ,ry),rx) and GY (GX (xt+1,ry),rx). Then, the frame xt
is warped as W (GY (GX (xt ,ry),rx),mx), which should be similar
to the next reconstructed frame GY (GX (xt+1,ry),rx). Correspond-
ingly, for two contiguous frames yt and yt+1 in domain Y , the
warped frame W (GX (GY (yt ,rx),ry),my) also should be similar to
the next reconstructed frame GX (GY (yt+1,rx),ry). So the temporal
cycle consistency constraint is applied in the L1 distance between
the warped frame and the synthetic next frame:

Ltempo(GX ,GY )

= Ex∼PX [||W (GY (GX (xt ,ry),rx),mx)−GY (GX (xt+1,ry),rx)||1]
+Ey∼PY [||W (GX (GY (yt ,rx),ry),my)−GX (GY (yt+1,rx),ry)||1].

(4)

Another problem is highlight distortion, which is addressed by
the specular constraint in our model. Here we introduce the specu-
lar map that is used to define a surface’s highlight color, as shown
in Figure 4. This specular map is rendered by the graphics pipeline
together with RGB image and motion vectors. Before training the
primary network, a specular generator GS that synthesizes a spec-
ular map from an RGB image should be pre-trained. For this pre-
trained network we use a standard Pix2pix-GAN model, and the
dataset consists of RGB image as the input and specular map as the
ground truth. Its specific architecture will be illustated in the next
section. In the training, GS extracts the specular map from synthetic
RGB image: GX (x,ry), GY (y,rx). The L1 loss is used to minimize
the error which is the sum of all the absolute differences between
the extracted specular map of the fake RGB image: GS(GX (x,ry)),
GS(GY (y,rx)) and the generated specular map of the real input:
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GS(x) and GS(y):

Lspe(GX ,GY ) =Ex∼PX [||GS(GX (x,ry))−GS(x)||1]
+Ey∼PY [||GS(GY (y,rx))−GS(y)||1].

(5)

Above all, our total loss is:

L(GX ,GY ,DX ,DY ) = LGAN(GX ,DY ,X ,Y )+LGAN(GY ,DX ,X ,Y )

+λCLcyc(GX ,GY )+λT Ltempo(GX ,GY )+λSLspe(GX ,GY ).

(6)

where λC, λT , and λS are tradeoff parameters. The complete net-
work structure is shown in Figure. 2 (d).

4. Implementation

Network Architecture. Our model is based on Cycle-GAN
[ZPIE17b], which have shown impressive results for unsupervised
neural style transfer. For generators GX , GY and GS, the networks
contain several Unet blocks, which are identical except in the skip
connections between each layer i in the encoder and layer n− i in
the decoder, where n is the total number of layers. We use 70×70
PatchGANs structure [IZZE17] for the discriminator DX and DY
networks, which discriminate each 70× 70 overlapping patches in
the image that are real or fake.

Training details. We totally trained the model for 200 epochs. The
learning rate is kept at 0.0002 for the first 50 epochs and linearly
decay to 0 over the following 150 epochs. The solver is based on
Adam optimization algorithm that is initialized from a Gaussian
distribution with a standard deviation of 0.02 and a mean of 0. In
the training, we set tradeoff parameters λC = λT = 10 and λS = 1.

For the training and running of the trained networks, we used
a single NVIDIA GeForce RTX 2080Ti GPU with 11GB VRAM
memory. The inference time is about 20ms per 512×512 frame.

Pipeline. In this application, the scene consists of hairs and other
objects like head and body. All of these are passed to the pipeline
in a usual way. Firstly, hairs are rendered by a fast shading model
with low quality. We only require to extract the hairs RGB from
the standard graphics pipeline before the merging step as shown
in Figure. 3. Then, these data are set as input to the pre-trained
generator GX . GX generates the photorealistic hairs RGB, which
are finally taken back to the pipeline and the merging process is
continued exporting to the frame buffer.

Experimental Setup. We need the training set that only consists of
hairs instead of the entire head or body. To this end, datasets are ren-
dered by ourselves. For the input domain, we choose a poor effect
material to fastly render hair image. In principle, the inputs have
highlight appearances that interact with the environment rather than
static texture. Each of the hair strands should be clear instead of
polygon patches. For the target domain, we used Maya Arnold’s
standard hair shader, which is an advanced Monte Carlo ray tracing
renderer built for the demands of visual effects, and hair is rendered
based on the d’Eon model for specular and Zinke model for diffuse.

We designed different kinds of hairstyles with diverse colors. For
each hairstyle, we simulated and rendered a 400-frames sequence
with a size of 512× 512. Each frame consists of three RGB chan-
nels for domain transfer, two motion vector channels for tempo-
ral constraint, three specular map channels for highlight constraint,

one depth map channel and one alpha map channel for merging
with the scene. The number of total images is 6000, 4000 for the
training and 2000 for the testing.

5. Results and Discussion

Figure 5 first shows our results by different inputs and references.
Our model can faithfully produce photorealistic hair appearances.
In the right column, the generated hairs not only exhibit realistic
shapes but also inherit similar clusters from the reference. The re-
sults also show our model can synthesize various hairstyles reason-
ably well. We can also analyze whether the highlight constraint is
necessary. Notice that the highlight appears in the same position
between input and output. Concequently, our method can faithfully
produce highlight appearances.

Figure 6 next shows our results and the results of several previ-
ous works by excluding the influence from reference for compar-
ison. All the models are trained by the same dataset. In Figure 6,
the right columns are results generated by Cycle-GAN, Recycle-
GAN, Mocycle-GAN and ours, respectively. Obviously, our model
achieves less distortions and more faithful hair appearances. The
results also show the output by previous models cannot reproduce
the exact highlight field. On the contrary, our method can faithfully
produce highlight appearances. Without the highlight constraint,
the results become more uncontrollable, this problem could lead
artificial sensation in the application.

Figure 7 shows the optical flow from Mocycle-GAN in the left
and our motion vectorin the right. Obviously, instead of synthesiz-
ing the fuzzy optical flow, our motion vector contains more detailed
information about motion directions and speeds.

In Figure 8, we analyze whether the highlight constraint can be
applied in different illumination conditions. In this experiment, we
used inputs rendered by the different scenes that the illumination
intensity and direction are changed. The results illustrate that our
method can faithfully produce highlight appearances in different
illumination conditions.

Rendering Synthesis Total
Arnold Renderer > 50s N/A > 50s

Ours < 0.70s 20ms < 0.72s

Table 1: Hardware Performance. We render the dataset of target
domain by Arnold Renderer and input domain by a fast rendering
model. Our model Generate one frame took 10 milliseconds on av-
erage and dozens of times faster than Maya Arnold.

Hardware performance. For the problems faced with our model,
we need a state-of-the-art rendering method to get the target domain
dataset. To this end, we produced the target domain hair image by
Maya Arnold. Each image took more than 50 seconds. In another
domain, we used a fast rendering method that took less than 0.7
seconds for each frame.

Table 1 shows that our model is dozen times faster than the di-
rect photorealistic rendering of hairs. It should be noticed that the
rendering time is an indeterminate value because the time budget is
different in various hairstyles and motions.
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(a) Input RGB (b) Input specular map (c) Input motion vector (d) Target RGB (e) Target specular map (f) Target motion vector

Figure 4: Our dataset consist of three channels RGB for domain transfer, two channels motion vector for temporal constraint, three channels
specular map for highlight constraint

Figure 5: Examples of various kinds colors results. The original inputs, the output results, and the different kinds of references are given.

FID PSNR SSIM
Cycle-GAN 3.97 24.99dB 0.91

Recycle-GAN 3.72 25.11dB 0.91
Mocycle-GAN 3.84 25.84dB 0.93

Ours 3.70 27.07dB 0.98

Table 2: FID scores on translation quality for RGB channels hair-
to-hair synthesis. Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) on specular map translation quality for hair
illumination appearances.

Evaluation metrics. We firstly adopt Fréchet Inception Distance
(FID) [HRU∗17] for the evaluation of RGB images. FID has been
widely applied to the evaluation of generated images and is a metric
for calculating the feature distance between real and generated im-
ages using a pre-trained inception network. By extracting features
from the RGB images and calculating the FID score, a lower score
indicates that the result is closer to the target domain.

Table 2 shows the FID scores of Cycle-GAN, Recycle-GAN and
our method. Note that Recycle-GAN performs better than Cycle-
GAN when considering the consistency of the domain and time
cycles through spatio-temporal constraints. Furthermore, Mocycle-
GAN promotes pixel-wise temporal consistency by warping the
synthetic frame with optical flow, which also achieves better per-
formance than Cycle-GAN. However, our method performs best by
using motion vectors that are more accurate than Mocycle-GANs
and constrained in time.

In addition, the specular map has to be evaluated to provide re-

alistic illumination to the hair. Here, Peak Signal-to-Noise Ratio
(PSNR) and Structural SIMilarity (SSIM) are introduced as image
quality evaluation metrics. In this scenario, given a pair of RGB
images in the output and input domains, a specular generator syn-
thesizes the output and input specular maps, respectively. As shown
in Table 2, by encouraging specular constraint, the results are con-
sistently better for the two metrics than the other methods. This
confirms the effectiveness of our specular constraints in retaining
more highlighting information in hair synthesis.

6. Conclusions

We have presented an energy-conserving model that synthesizes
photorealistic hair images from low-quality hair images. Our
method transfers hair images to those with desired appearances
according to the reference hair. We explore the continuity for the
translation of a hair image sequence by our temporal constraints,
which is the first time motion vectors have been applied to improve
the structure and temporal continuity of hair. Our method also in-
troduced the specular constraint to ensure faithful highlight appear-
ances.

Compared with previous image translation methods, our model
generates more convincing results and improves the preservation
of illumination from the input. In particular, our model is dozens of
times faster than traditional state-of-art hair rendering models. Our
work suggests that the use of unsupervised image translation can
faithfully reproduce photorealistic hair animation and significantly
reduce computational expenses. We expect that our novel frame-
work can be applied to the shading of semi-transparent objects like
sunset glow and colored glass.
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(a) Input (b) Cycle-GAN (c) Recycle-GAN (d) Mocycle-GAN (e) Ours

Figure 6: Examples of previous works results and our results.

Figure 7: The left figure is synthesized by Flownet2 from Mocycle-
GAN model. The right figure is directly generated by Arnold ren-
derer and used for predicting the future frame in our model.

Figure 8: Examples of illumination appearances. By encouraging
the highlight constraint, the highlight has appeared in the position
that is close to the input highlight. It demonstrates that our method
can faithfully produce highlight appearances in different illumina-
tion conditions.
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