
Multiresolution Interpolation Meshes

Takashi Michikawa∗ Takashi Kanai Masahiro Fujita Hiroaki Chiyokura
Keio University, Faculty of Environmental Information

Endo 5322, Fujisawa, Kanagawa, 252-8520, JAPAN
E-mail: {miti, kanai, t98821mf, chiyo}@sfc.keio.ac.jp

http://graphics.sfc.keio.ac.jp/MIMesh/

Abstract

In this paper, we propose a new multiresolution-based
shape representation for 3D mesh morphing. Our approach
does not use combination operations that caused some se-
rious problems in the previous approaches for mesh mor-
phing. Therefore, we can calculate a hierarchical interpo-
lation mesh robustly using two types of subdivision fitting
schemes. Our new representation has a hierarchical semi-
regular mesh structure based on subdivision connectivity.
This leads to various advantages including efficient data
storage, and easy acquisition of an interpolation mesh with
arbitrary subdivision level. We also demonstrate several
new features for 3D morphing using multiresolution inter-
polation meshes.
Keywords: 3D mesh morphing, interpolation mesh, mul-
tiresolution representation, subdivision connectivity, nor-
mal map, multiresolution editing.

1. Introduction

Three-dimensional (3D) morphing (or metamorphosis),
which establishes the smooth transition between two or
more existing 3D objects, is now one of the major research
topics in computer graphics and its applications. In this pa-
per, we focus on mesh morphing, that is, morphing between
two or more triangular polygon-based objects.

Mesh morphing techniques may be seen as a two-step
process that involves finding one-to-one correspondence be-
tween two or more meshes, and defining interpolation paths
for each pair of corresponding points on the meshes to cal-
culate in-between shapes. Most researches in mesh morph-
ing [16, 1, 10, 23, 14] construct an interpolation mesh to
establish the correspondence in the first step. It has an or-
dinary vertex/edge/face connectivity of a mesh and two or
more 3D positions at each vertex.

∗Now at Oracle Corp. Japan.

The primary issue that should be considered is that the
construction of such an interpolation mesh is based on com-
bination operations of both connectivity and geometry be-
tween multiple meshes. Connectivity combination opera-
tions, in particular, cause some problems. First, it requires
several unstable numerical calculations. Second, it typically
produces a mesh with a larger number of faces than an orig-
inal mesh. Third, it has an irregular connectivity including
sharp, long and narrow triangles. Hence, its rendering qual-
ity is poor. Another issue is the difficulty of interpolation
control using such an interpolation mesh.

In this paper, we address the above problems by propos-
ing a multiresolution interpolation mesh, an interpolation
mesh with multiresolution representation. For constructing
such a mesh, we do not need to use combination operations
between two meshes. The basic idea for the construction is
to apply subdivision fitting processes to create an interpola-
tion mesh that approximates multiple original meshes. The
use of a multiresolution interpolation mesh has the follow-
ing advantages: First, it has a semi-regular mesh structure
obtained by repetitive 4-to-1 splits from a base interpola-
tion mesh; thus, it is possible to store data efficiently. Sec-
ond, it has a coarse-to-fine hierarchical structure; thus, an
interpolation mesh with arbitrary subdivision level can be
extracted easily. This is especially helpful for the rendering
process. Third, we can keep the number of faces the same
extent as that of an original mesh using a local subdivision
fitting scheme. Moreover, we show that various new types
of interpolations, for example, normal map morphing, in-
terpolation path editing and multi-target morphing, can be
established by using multiresolution interpolation meshes.

2. Related Work

The survey of 3D morphing can be referred to in [21, 9].
Approaches for establishing 3D morphing are classified into
two categories: volumetric morphing and mesh morphing.

Mesh morphing to transform the source mesh to the tar-
get involves two problem steps. The first step is to establish

mailto:kanai@sfc.keio.ac.jp
http://graphics.sfc.keio.ac.jp/MIMesh/

a correspondence from each point of the source mesh to a
point of the target. Using this correspondence, the next step
creates a series of intermediate objects by interpolating cor-
responding points from the source positions to the target
positions. These steps are called correspondence problem
and interpolation problem, respectively [16].

Most approaches that address the correspondence prob-
lem use combination operations to establish face correspon-
dences between two given meshes. In combination oper-
ations, we usually construct an interpolation mesh that is
represented by a logical sum of two meshes. It involves the
connectivity of the two meshes. Each vertex of the interpo-
lation mesh has two 3D positions.

The construction of the interpolation mesh is based on
the mapping from given meshes or a part of these to a com-
mon reference shape. Combination operations are actu-
ally performed on these shapes. For example, Kent et al.
[16] and Alexa [1] used a sphere to project two polyhedral
shapes. Lazarus and Verroust [20] introduce skeletons for
cylinder-like objects. Kanai et al. [13], Gregory et al. [10]
and Zöckler et al. [28] utilized mesh parameterization tech-
niques such as harmonic mapping [6] to imbed a certain re-
gion of a mesh to a two-dimensional (2D) convex polygon.

However, the combination operation for constructing the
interpolation mesh has some problems. Firstly, it produces
a mesh that has a large number of faces. In [14], the number
of faces becomes roughly 2.5 to 10 times larger than that of
an original mesh. Secondly, it requires several numerical
computations including intersections of line or curve seg-
ments. As a result, we need to design or choose algorithms
to prevent computation failure and to keep the consistent
connectivity of the combined mesh. Clearly, combination
operations between meshes with a larger number of faces
are more difficult to perform. Although Lee et al. [23] have
developed an efficient and robust algorithm for the combi-
nation operation using MAPS [22], it still remains a prob-
lem that the combined mesh has a large number of faces.

Some issues need to be resolved when a combined inter-
polation mesh is used for the interpolation problem. One
is that its connectivity usually becomes irregular including
many sharp, long and narrow triangular polygons. This has
a strongly harmful influence on the rendering of in-between
shapes. Another issue is that an interpolation mesh has an
“ordinary” mesh structure. Thus interpolation control per
vertex is difficult. In some other researches, interpolation
control [15, 2] per sub-region of a mesh has been done.
However, more sophisticated interpolation control of each
vertex in a sub-region is also difficult.

As mentioned above, it is difficult to control shape trans-
formation using an interpolation mesh created by the com-
bination operation based approaches. This is because these
approaches cannot always be designed for the interpolation.
It should be noted that the interpolation mesh itself is an im-

level 1

.

.

.

level n

level 2

.

.

.

.

.

.

(Base Interp. Mesh)

Geometry Connectivity

level 0

Figure 1. Quad-tree structure of MIMesh.

portant data structure to establish real-time shape deforma-
tions. Recently, activities for the standardization have been
initiated. Alexa et al. [3] proposed “The Morph Node” as
an extension node of VRML. XVL data format by Lattice
Technology Inc. [26] also prepared a similar node. Fur-
thermore, the recently developed graphics processor unit
GeForce3 by nVIDIA Inc. has the hardware support for
shape deformation in the form of an interpolation mesh by
using one of the new functions, the vertex shader.

More recently, Ohbuchi et al. [24] proposed an inter-
polation control of 3D morphing based on multiresolution
representation. Unfortunately, intermediate shapes must be
extracted from a shape in four-dimensional space; thus, they
do not take the form of an interpolation mesh.

3. Multiresolution Interpolation Mesh

Interpolation mesh has the same shape representation as
an ordinary mesh that is composed of a vertex/edge/face
graph structure. The difference is that each vertex has sev-
eral 3D positions, attributes (colors, normals, texture coor-
dinates and so on) and, if needed, interpolation paths be-
tween these positions. If you use these paths, 3D morphing
can be carried out by shifting the 3D position of each vertex
along a path, without changing its connectivity.

The multiresolution interpolation mesh (MIMesh) pro-
posed here is a multiresolution version of the above interpo-
lation mesh. It has a semi-regular mesh structure defined by
regularly subdivided faces from a base mesh (named base
interpolation mesh). We use 4-to-1 split to subdivide a face
into sub-faces; thus, our MIMesh has subdivision connec-
tivity. Faces of MIMesh are stored in a quad-tree data struc-
ture, as shown in Figure 1. In this structure, faces of the base
interpolation mesh are stored in the root node. Each node
has links to four child nodes, and each child node stores one
of four sub-faces. We can easily obtain the interpolation

S1 S2M0

M1

Mn

(1) (1)

(2)

(2)

(2)

(2)

(3)

Figure 2. Overall framework of our MIMesh
construction approach: (1) A base interpo-
lation mesh M 0 creation from input meshes
S1, S2. (2) Mesh partition and parameteriza-
tion. (3) Subdivision fitting to construct hier-
archical interpolation meshes M1, . . . , Mn.

mesh at an arbitrary subdivision level by traversing such a
quad-tree structure. Other elements such as vertices, several
3D positions, attributes and interpolation paths are stored in
the array structure.

Figure 2 illustrates an overview of our MIMesh construc-
tion approach. Our approach can be naturally extended to
the case of more than three meshes, but we will discuss here
the simple case in which the number of input meshes is two.
The basic procedure of our construction approach is divided
into the following three steps: (1) A base interpolation mesh
M0 is manually created by the user from input meshes S 1

and S2 (Section 3.1). (2) Each input mesh is partitioned into
several regions (we call them patches later) according to the
faces of the base interpolation mesh. To each patch we ap-
ply mesh parameterization to assign a 2D parameter value
to each vertex of input meshes (Section 3.2). (3) We apply a
subdivision fitting algorithm to create hierarchical interpo-
lation meshes M 1 . . .Mn, where n denotes a subdivision
level (Section 3.3).

Our MIMesh construction approach is strongly inspired
by the remeshing algorithm of Guskov et al. [11]. The dif-
ference between [11] and ours is that our approach is de-
signed for fitting two or more input meshes simultaneously.
In addition, the first two steps of the construction process

discussed later are similar to the approach of [14].
More recently, Praun et al. [25] proposed an approach

quite similar to ours. The main difference is that we pro-
pose several techniques to realize an efficient real-time 3D
morphing, for example, the normal map encoding and the
multiresolution path editing, etc. (Section 4).

Notation: We denote topological elements such as a
mesh, a face, an edge and a vertex by italic S, f, e and v,
respectively. The 3D position of a vertex is represented by
bold face v ∈ R3 and the 2D position in the parametric
domain is represented by bold face italic v ∈ R2. A scalar
value is represented by italic k.

3.1. Creating Base Interpolation Mesh

In the primary step for constructing MIMesh, the user
manually creates a rough polyhedral surface for the base in-
terpolation mesh. The user selects a vertex from each input
mesh to create a vertex of the base interpolation mesh. The
3D positions of selected vertices in input meshes are as-
signed to such a created vertex. Next the user creates faces
of the base interpolation mesh M 0 to be a rough approxi-
mation of each input mesh. We have developed a system for
creating the base interpolation mesh.

There are two reasons for creating the base interpolation
mesh manually. One is that vertex/face correspondences
created here imply the shape features of input meshes. For
example, the user may wish to transform a tiger’s nose to
a venus’s nose. It is difficult to specify such user-oriented
correspondences automatically. The other reason is that the
base interpolation mesh can be used for roughly checking
the final morphing result. The design of the base interpo-
lation mesh has a large effect on the partitioning of input
meshes and is therefore an important process for the user to
understand such feature correspondences intuitively.

It is desirable that the user creates the base interpolation
mesh to be a simplified version of each input mesh. How-
ever, automatic construction of such a base mesh by using
mesh simplification techniques (for example, [8]) is diffi-
cult, because a better approximation for one mesh cannot
always be better for other meshes.

3.2. Mesh Partition and Parameterization

The next step in the MIMesh construction process is the
partition of each mesh into several patches and to apply
mesh parameterization to each patch. Each patch corre-
sponds to a face of the base interpolation mesh.

First, we determine the boundary curves of the patches.
Each boundary curve corresponds to an edge of the base
interpolation mesh and should be on an input mesh. To ob-
tain boundary curves, we calculate the approximate short-

Figure 3. Subdivision fitting result without us-
ing mesh parameterization.

est paths using [12]. When all of the shortest paths have
been calculated, input meshes are ready to be partitioned
into patches. If a boundary curve passes into a face of an
input mesh, we cut such a face to sub-faces and triangulate
them. All faces of each patch can be gathered by a simple
greedy-like algorithm.

In the mesh partition process, we need to consider the
possibilities that boundary curves are invalid, namely, two
boundary curves cross each other, or share some edges in an
input mesh. This is mainly due to that the boundary curves
are too long. We address this problem by means of an in-
teractive curve modification. If such a case occurs, we in-
sert some mid-points to shorten a boundary curve, then re-
calculate them. By using a mid-point, a boundary curve can
be divided into two curves. Note that these points are used
only for arranging boundary curves and are not affected by
the connectivity of the base interpolation mesh.

For each patch, we apply mesh parameterization to as-
sign a 2D parameter to a vertex. There are two reasons for
using mesh parameterization. One is for the robust calcu-
lation of the subdivision fitting algorithm discussed in Sec-
tion 3.3. If mesh parameterization is not applied, the fitting
results will typically have some flipping triangles and self-
intersections, as shown in Figure 3. The other is that they
are used for texture mapping, as discussed in Section 4.1.

We use Floater’s shape-preserving mapping algorithm
[7] for mesh parameterization. In [7], an internal vertex pi

in the parametric domain is represented by a convex combi-
nation of its 1-ring neighbor vertices pj :

pi =
∑

j

λi,jpj , λi,j ≥ 0,
∑

j

λi,j = 1, (1)

where λi,j denotes a scalar weight between pi and pj , cal-
culated by using a geodesic polar map [27]. The main ad-
vantage of Floater’s weight is that it always has a positive
value. This guarantees that the linear system derived from
Equation (1) can be solved robustly.

input mesh

interpolation mesh

x

z

y

u

v

Figure 4. Uniform subdivision fitting process.

3.3. Subdivision Fitting

The final step in the MIMesh construction process is the
subdivision fitting from the base interpolation mesh to ap-
proximate input meshes. Figure 4 illustrates a uniform sub-
division fitting process for each face. To obtain the interpo-
lation mesh at subdivision level i + 1 from that at level i,
the following two steps are processed.

First, we apply 4-to-1 split for all faces at level i. Each
face is subdivided into four sub-faces. At the same time, we
assign a 2D parameter value to each created vertex. We use
the midpoint of two end vertices of an edge. Next, we find
the 3D positions of each created vertex of the interpolation
mesh so that which are on the faces of input meshes. This
can be processed by using the inverse mapping of mesh pa-
rameterization described in Section 3.2. When a vertex p
is included in a face of an input mesh f = (p i, pj, pk) on
the parametric domain, the 3D position p is calculated by a
barycentric coordinate (α, β, γ):

p = αpi + βpj + γpk. (2)

Before the calculation of p, we need to find a face f in
which p is included. This problem can be, in general, re-
garded as a point location problem in the parametric do-
main, and can be processed in O(log n)-time for each ver-
tex. Then, the calculation for the uniform subdivision fitting
at each level is processed in O(m log n)-time, where m is
the number of created vertices and n is the number of faces
in the interpolation mesh at that level.

Local Subdivision Fitting

The uniform subdivision fitting scheme described above,
however, has a problem that the number of faces is unneces-

f

a corresponding patch
of an input mesh

|vi - pi|
pi

vi

Figure 5. Error function for a face of MIMesh.

sarily increased because those in regions with high approx-
imation accuracy are also subdivided. To address this prob-
lem, we introduce the local subdivision fitting scheme. We
modify a fitting algorithm so that MIMesh with less number
of faces can have high approximation accuracy. The basic
idea is that we measure an approximation error from each
vertex of an input mesh to a face of MIMesh in advance, and
we subdivide the face that has a high approximation error.

We now define an error function E(f) for each face f
of MIMesh, as shown in Figure 5. For each vertex vi of
a patch, we find a point pi in a face of MIMesh, in which
|vi − pi| is minimum Euclid distance. An error function
of f for one mesh S1 is defined as the maximum Euclid
distance for all vertices of a patch that correspond to a face
of MIMesh as follows:

E1(f) = max{|vi − pi|}, i = 1...n, (3)

where n denotes the number of vertices in a patch. We also
define E2(f) for the other mesh S2. An error function E(f)
used for the evaluation is defined as the maximum of nor-
malized E1(f) and E2(f), that is, the value divided by the
diagonal length of a bounding box B(S 1)

(
B(S2)

)
of each

input mesh, respectively:

E(f) = max
(

E1(f)
B(S1)

,
E2(f)
B(S2)

)
. (4)

The reason why we normalize is that E 1(f) and E2(f) are
dependent on the size of each mesh. If S 1 is much larger
than S2, E1(f) will be larger than E2(f). This produces
an unbalanced MIMesh in which only the geometry of S 1

is considered.
The local subdivision fitting algorithm has the following

steps:

1. Insert all faces of the base interpolation mesh M 0 to a
list L.

2. Calculate E(f) described in Equation (4) for each face
f of L. If E(f) ≤ ε, delete f from L. ε denotes a user-
specified threshold.

T-vertex

Figure 6. Adaptive subdivision scheme to
delete T-Vertices.

3. For each face in L, subdivide to four sub-faces by 4-to-
1 split. Calculate 3D positions for each created vertex.
Delete f and insert four sub-faces to L.

4. Apply an adaptive subdivision scheme to delete T-
vertices, as shown in Figure 6.

5. Repeat 2, 3 and 4 until L is empty.

T-vertex appears along the faces at which different subdi-
vision levels meet. To delete T-vertices, we use red-green
triangulations [19]. In addition to an ordinary 4-to-1 split
(green), we apply a triangle bisection (red). If the number
of T-vertices is one in a face, we apply a red triangulation.
If the number of T-vertices is two, we first apply a green
triangulation to this face, and then apply a red triangulation
to its neighboring face.

3.4. Experimental Results

We evaluate our MIMesh construction approach in this
section. Figure 7 shows the results of constructing MIMesh
from two input meshes, venus (24,000 faces) and tiger
(8,064 faces). In Figure 7, (a) shows two input meshes S,
and (b) shows the base interpolation mesh created by the
user from them. We created the base interpolation mesh
so that corresponding vertices are uniformly distributed on
the whole shape. Furthermore, more vertices are added to
distinctive regions (for example, ears, noses), so that a less
subdivided interpolation mesh with higher approximation
accuracy can be obtained. Figure 7 (c) shows MIMesh to
which uniform subdivision fitting is applied. Here, left is
subdivision level 2 (M 2), and right is level 4 (M 4). Figure
7 (d) shows MIMesh to which local subdivision fitting is
applied at different ε (0.01, 0.001).

Table 1 indicates mesh sizes (the number of faces), ap-
proximation errors and calculation times for the construc-
tion of MIMesh shown in Figure 7. We use IRI-CNR Metro
tool [5] for the evaluation of approximation errors. We show
here the percentage of mean square error (L2−norm) for a
diagonal length of a bounding box of a mesh. It can be seen
in this table that the number of faces of the interpolation

S M0 M2 M4 ε = .01 ε = .001
(a) (b) (c) (d)

Figure 7. Subdivision fitting results: (a) Input meshes (venus, tiger). (b) A base interpolation mesh
created by the user. (c) Uniform subdivision fitting results. Left: M 2, Right: M 4. (d) Local subdivision
fitting results. Left: ε = .01, Right: ε = .001.

size (#faces) error (%)
S M0 M2 M4 ε = .01 ε = .001 M 0 M2 M4 ε = .01 ε = .001

venus 24,000 54 864 13,824 5,048 19,784 3.81 0.50 0.09 0.09 0.04
tiger 8,064 3.59 0.72 0.12 0.15 0.07

time (sec.)
pre. M 2 M4 ε = .01 ε = .001
51.2 1.4 32.3 20.9 84.1

Table 1. Statistical summary of Figure 7: mesh sizes (number of faces), approximation errors and
calculation time.

mesh with ε = 0.01 is 60% fewer than that of M 4, while
both approximation errors of these two meshes are almost
equal. This proves that our local subdivision fitting scheme
produces a good approximation with decreasing the number
of faces. It can also be seen from Figure 7 (d) that faces es-
pecially in the higher curvature regions are selectively sub-
divided.

On the other hand, it should be noted that our local subdi-
vision fitting scheme also produces redundantly subdivided
faces for one mesh. That is to say, faces that have low
approximation errors in a certain region of one mesh are
forcibly subdivided because faces in a corresponding region
of the other mesh have high approximation errors. This is
due to the fact that an error function in our fitting algorithm
adopts the maximum approximation error of either face in
two meshes.

The calculation time is measured on an AT-compatible
PC (PentiumIII 1GHz CPU, 512MB Memory) environment.
Note that our code is not fully optimized and needs more
improvement. In Table 1, the value indicated by “pre.” in-

cludes the time for calculating the shortest paths to parti-
tion input meshes, for grouping meshes and for mesh pa-
rameterization of all patches. Shortest path computation is
very costly among these three processes, because 81 paths
for each mesh must be computed. Other calculation times
shown in this table are the cost for the subdivision fitting
process from the base interpolation mesh M 0. In general, a
local subdivision scheme can be more costly than a uniform
subdivision scheme. This is due to an additional minimum
distance computation for each vertex in the former.

4. 3D Morphing Using Multiresolution Inter-
polation Meshes

MIMesh is a very powerful tool for 3D morphing. To
prove this, we discuss in this section three new interpolation
schemes, normal map morphing, interpolation path editing
using multiresolution representation, and multi-target mor-
phing.

n (nx, ny, nz) (r, g, b)

u

v

x y

z

Figure 8. Normal map creation.

4.1. Using Normal Map

MIMesh is only an approximation of input meshes; thus,
their exact and detailed geometries cannot be recovered per-
fectly. However, this issue can be resolved to a certain ex-
tent by texture mapping based on using normal maps for
visual effects.

Normal map is an image that represents quantized nor-
mals of surfaces or meshes and has the possibility to be an
alternative for visualizing highly detailed geometry. In con-
trast, there is another technique called bump mapping. It
utilizes a height map to represent a bumpy surface; however,
the conversion from a height map to a normal perturbation
map is needed [17]. If per-vertex normals of an input mesh
are obtained, it is better to use normal maps for exact visual
effects. Recently, Cignoni et al. [4] proposed a method for
obtaining normal maps by sampling normals of an original
mesh to its simplified mesh.

In our MIMesh, the interpolation mesh at each subdivi-
sion level shows one-to-one correspondence to each of the
input meshes. That is, each vertex of a patch has a 2D pa-
rameter calculated by mesh parameterization as described in
Section 3.2, and each vertex of MIMesh has a 2D parameter
in the same parameter space as well. Therefore, it is easy to
apply texture mapping to MIMesh using these parameters
and normal maps extracted from input meshes.

Our method for creating normal maps is simple and di-
rect. As shown in Figure 8, we first calculate a per-vertex
normal n (nx, ny, nz) for each vertex of a patch. Each co-
ordinate of this normal is within the limits of [-1, 1]. We
quantize these coordinates to integers of a range [0, 255] to
create an RGB pixel (r, g, b). We define a triangular region
on 2D image space and put a pixel into it. Each remaining
RGB pixel in the region is calculated by barycentric inter-
polation of its corresponding face of a patch. Finally, a set
of pixels for all patches of an input mesh are packed into a
single rectangular image. For 3D morphing, we interpolate
not only between geometries but also between two normal
maps.

Figure 9 demonstrates a visual comparison between
MIMesh with only geometry, and with both geometry and
texture. Figure 9 (a) shows an input mesh, and (b) shows

(a) input (b) M 4

(c) M 3+ normal map (d) M 4+ normal map

Figure 9. Texture Mapping of MIMesh using
normal map.

only the geometry of the interpolation mesh M 4. Figures
9 (c) and (d) show the results of applying normal maps to
the interpolation mesh at levels 3 (M 3) and 4 (M 4), respec-
tively. It can be seen from this figure that we can obtain vi-
sually more similar results from an interpolation mesh with
normal maps than from only the geometry of M 4, while the
former uses the coarser geometry of M 3. We can obtain an
interpolation mesh at arbitrary subdivision level by apply-
ing the same texture from MIMesh by traversing a quad-tree
structure. This is effective for the LOD control of display.

4.2. Using Multiresolution Representation

In this section, we discuss two advantages of our
MIMesh due to its multiresolution representation.

One advantage is the efficiency of data storage. Faces are
not necessary in the data format of MIMesh. In the ordinary
mesh format such as VRML, faces (for example, several
vertex ids) must be explicitly specified. In MIMesh, faces
are consistently managed in subdivision connectivity, and
can be created automatically in the applications. Our data

(a)

(b)

Figure 10. Interpolation path control using multiresolution representation.

MIMesh (up to M 4) 485
Normal map images 187 + 139

venus 818
tiger 260

Table 2. Comparison of data storage. (kbyte)

format of MIMesh consists of an ordinary mesh format (ver-
tices and faces) of the base interpolation mesh, file names of
normal map images, a header including per-patch attributes
(for example, a set of interpolation paths), and a set of 3D
positions for vertices needed as a keyframe interpolation.
Typically, most of data are occupied by the 3D positions. A
2D parameter for each vertex is calculated automatically in
the applications.

Table 2 shows the comparison of data storage in Fig-
ures 7 and 8. The MIMesh used here is a uniform version
up to M 4 stored in ASCII format. Each normal map has
512×512 image size and is stored by compressed TGA for-
mat. Input meshes are saved in standard Wavefront OBJ
ASCII format. It can be seen from Table 2 that the sum of
data size needed for 3D morphing (MIMesh and two normal
map images) is 50% less than the sum of data size of input
meshes.

The other advantage is that we can edit interpolation
paths using multiresolution representation. In MIMesh, the
vertex pi of an interpolation mesh at subdivision level i can
be represented by using two end vertices p i−1

s ,pi−1
e of an

edge at coarser level i−1 and a difference vector D i (called
detail coefficient) as follows:

pi =
1
2

(
pi−1

s + pi−1
e

)
+ Di. (5)

From Equation (5), MIMesh can be alternatively defined

as a set of detail coefficients and a base interpolation mesh.
We can use this re-definition for multiresolution editing. As
some other researches on multiresolution editing for single
meshes [29, 18], modifications can be done at the coarsest
level (a base interpolation mesh in our case), and meshes at
higher levels can be recovered by sequentially adding detail
coefficients.

Figure 10 demonstrates the results of the interpolation
path editing in MIMesh. (a) shows the result that all paths
are linear. In (b), the interpolation path for each vertex
of the base interpolation mesh is defined as a cubic Bézier
curve. For paths put on top of venus’s ears, only two middle
control points are modified and detail coefficients are added.
Black lines on the left of Figures 10 (a) and (b) denote such
paths.

4.3. Multi-target Morphing

By using uniform subdivision fitting, the number of faces
of MIMesh depends only on that of the base interpolation
mesh and the number of subdivision levels. Therefore, we
can establish multi-target morphing for more than three in-
put meshes in particular.

Figure 11 demonstrates the results of multi-target mor-
phing, in which one more mesh (mannequin) is added to
the result of two meshes shown in Figure 7. By using our
system for creating a base interpolation mesh, several ver-
tices of the third mesh correspond to those of the other two
meshes in the same manner. We calculate 3D positions of
interpolation meshes up to subdivision level M 4 in the uni-
form subdivision fitting process. Mesh size of new M 4 is
13,824, and is the same as that in the case of two meshes.

In Figure 11, we use a simple convex combination in-

Figure 11. Multi-target morphing from three input meshes.

terpolation. For the interpolation of n meshes, 3D position
v of an in-between mesh is calculated using the following
equation:

v(t1, t2, ..., tn) =
n∑

i=1

tivi,
n∑

i=1

ti = 1, (6)

0 ≤ ti ≤ 1,

where ti denotes the weight for each 3D position.

5. Conclusions and Future Work

We have proposed a new multiresolution-based shape
representation for 3D mesh morphing. Our approach does

not use combination operations that caused several seri-
ous problems in previous mesh morphing. Therefore, we
can obtain interpolation meshes robustly using two types
of subdivision fitting schemes. The multiresolution inter-
polation mesh has a hierarchical semi-regular mesh struc-
ture based on subdivision connectivity. We have shown that
this leads to various advantages, for example, efficient data
storage and easy acquisition of an interpolation mesh with
arbitrary subdivision level. We have also demonstrated sev-
eral new features by using our multiresolution interpolation
meshes, efficient rendering of 3D morphing using normal
maps, multiresolution editing of interpolation paths, and
multi-target morphing.

There are many future directions for us to make the

most of our new representation for efficient 3D morphing.
We are interested in the following two issues in particu-
lar: new special effects of the interpolation using the im-
age processing approach of normal maps, and applications
to non-triangular meshes including quadrilateral (for exam-
ple, Catmull-Clark) subdivision surfaces.

Acknowledgement

The authors would like to thank the reviewers for use-
ful comments. “Mannequin” model is from Graphics and
Imaging Laboratory, University of Washington, “venus”
model is from Cyberware Inc., and “tiger” is courtesy of
Viewpoint DataLabs.

References

[1] M. Alexa. Merging polyhedral shapes with scattered fea-
tures. The Visual Computer, 16(1):26–37, 2000.

[2] M. Alexa. Local control for mesh morphing. Shape Model-
ing International, to appear, 2001.

[3] M. Alexa, J. Behr, and W. Müller. The morph node. In Proc.
ACM VRML/Web3D 2000, pages 29–34. ACM Press, New
York, 2000.

[4] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and
M. Tarini. Preserving attribute values on simplified meshes
by re-sampling detail texture. The Visual Computer,
15(10):519–539, 1999.

[5] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measur-
ing error on simplified surfaces. Computer Graphics Forum,
17(2):167–174, 1998.

[6] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of arbi-
trary meshes. In Computer Graphics (Proc. SIGGRAPH 95),
pages 173–182. ACM Press, New York, 1995.

[7] M. S. Floater. Parametrization and smooth approximation of
surface triangulations. Computer Aided Geometric Design,
14:231–250, 1997.

[8] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. In Computer Graphics (Proc. SIG-
GRAPH 97), pages 209–216. ACM Press, New York, 1997.

[9] J. Gomes, L. Darsa, B. Costa, and L. Velho. Warping and
Morphing of Graphical Objects. Morgan Kaufmann, 1999.

[10] A. Gregory, A. State, M. Lin, D. Manocha, and M. Liv-
ingston. Interactive surface decomposition for polyhedral
morphing. The Visual Computer, 15(9):453–470, 1999.

[11] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder.
Normal meshes. In Computer Graphics (Proc. SIG-
GRAPH2000), pages 95–102. ACM Press, New York, 2000.

[12] T. Kanai and H. Suzuki. Approximate shortest path on a
polyhedral surface based on selective refinement of the dis-
crete graph and its applications. In Proc. Geometric Mod-
eling and Processing 2000, pages 241–250. IEEE CS Press,
Los Alamitos CA, Apr. 2000.

[13] T. Kanai, H. Suzuki, and F. Kimura. Three-dimensional geo-
metric metamorphosis based on harmonic maps. The Visual
Computer, 14(4):166–176, 1998.

[14] T. Kanai, H. Suzuki, and F. Kimura. Metamorphosis of ar-
bitrary triangular meshes. IEEE Computer Graphics and
Applications, 20(2):62–75, April 2000.

[15] T. Kanai, H. Suzuki, J. Mitani, and F. Kimura. Interactive
mesh fusion based on local 3D metamorphosis. In Proc.
Graphics Interface ’99, pages 148–156. Morgan Kaufmann
Publishers, San Francisco, 1999.

[16] J. R. Kent, W. E. Carlson, and R. E. Parent. Shape transfor-
mation for polyhedral objects. In Computer Graphics (Proc.
SIGGRAPH 92), pages 47–54. ACM Press, New York, 1992.

[17] M. J. Kilgard. A practical and robust bump-mapping tech-
nique for today’s GPUs. Game Developer’s Conference
2000 Course "Advanced OpenGL Game Development",
2000. http://www.nvidia.com/Developer.nsf.

[18] L. P. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel.
Interactive multi-resolution modeling on arbitrary meshes.
In Computer Graphics (Proc. SIGGRAPH 98), pages 105–
114. ACM Press, New York, 1998.

[19] U. Labsik, L. P. Kobbelt, and H.-P. S. Robert Schneider.
Progressive transmission of subdivision surfaces. Compu-
tational Geometry, 15(1–3):25–39, 2000.

[20] F. Lazarus and A. Verroust. Metamorphosis of cylinder-like
objects. The Journal of Visualization and Computer Anima-
tion, 8(3):131–146, 1997.

[21] F. Lazarus and A. Verroust. Three-dimensional metamor-
phosis: A survey. The Visual Computer, 14(8-9):373–389,
1998.

[22] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schröder.
MAPS: Multiresolution adaptive parameterizaiton of sur-
faces. In Computer Graphics (Proc. SIGGRAPH 98), pages
95–104. ACM Press, New York, 1998.

[23] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schröder.
Multiresolution mesh morphing. In Computer Graphics
(Proc. SIGGRAPH 99), pages 343–350. ACM Press, New
York, 1999.

[24] R. Ohbuchi, Y. Kokojima, and S. Tahahashi. Blending
shapes by using subdivision surfaces. Computers and
Graphics, 25(1):41–58, 2001.

[25] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh
parameterizations. Computer Graphics (Proc. SIGGRAPH
2001) to appear, 2001.

[26] A. Wakita, M. Yajima, T. Harada, H. Toriya, and
H. Chiyokura. XVL: A compact and qualified 3D repre-
sentation with lattice mesh and surface for the internet. In
Proc. ACM VRML/Web3D 2000, pages 21–24. ACM Press,
New York, 2000.

[27] W. Welch and A. Witkin. Free-form shape design using
triangulated surfaces. In Computer Graphics (Proc. SIG-
GRAPH 94), pages 247–256. ACM Press, New York, 1994.

[28] M. Zöckler, D. Stalling, and H.-C. Hege. Fast and intuitive
generation of geometric shape transitions. The Visual Com-
puter, 16(5):241–253, 2000.

[29] D. Zorin, P. Schröder, and W. Sweldens. Interactive mul-
tiresolution mesh editing. In Computer Graphics (Proc.
SIGGRAPH 97), pages 259–268. ACM Press, New York,
1997.

	1 . Introduction
	2 . Related Work
	3 . Multiresolution Interpolation Mesh
	3.1 . Creating Base Interpolation Mesh
	3.2 . Mesh Partition and Parameterization
	3.3 . Subdivision Fitting
	3.4 . Experimental Results

	4 . 3D Morphing Using Multiresolution Interpolation Meshes
	4.1 . Using Normal Map
	4.2 . Using Multiresolution Representation
	4.3 . Multi-target Morphing

	5 . Conclusions and Future Work

