Hierarchical Computation of Conformal Spherical Embeddings

Takashi Kanai

Keio University SFC, Japan

Mathematical Methods for Curves and Surfaces 2004 Tromso, Norway 1-6 July, 2004

Outline

- Background, related work, contribution
- Conformal spherical parameterization [Gu et al. 2004]
- Hierarchical approach
- Results and discussion
- Conclusion and future work

Parameterization

... maps (a part of) a mesh to a simpler primitive

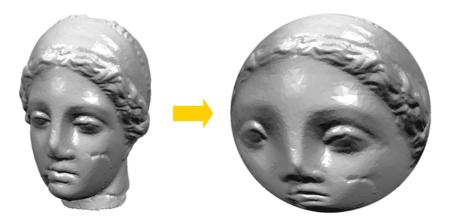
(plane, sphere, cylinder, octahedron, ...)

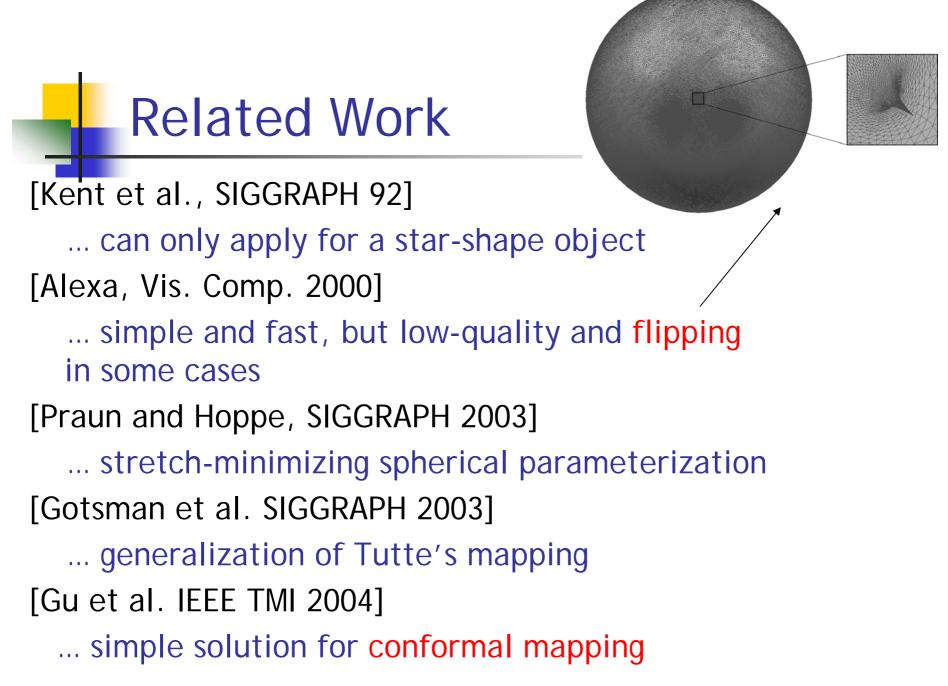
- Fundamental technique of DGP
- Used for Applications such as texture mapping, remeshing, morphing, surface reconstruction etc.

Spherical Parameterization

... maps a genus zero mesh to a sphere

- Consistent for a whole region of a mesh
 - Can perform some geometric processing applications easily (ex. remeshing, morphing)
 - need not to consider about the boundary





Our Contribution

- Hierarchical computation of conformal spherical parameterization
 - Extension to [Gu et al. 2004]
 - Keeps conformity
 - Robust and fast
 - (User-specified) parameter-independent

... free to try-and-error!

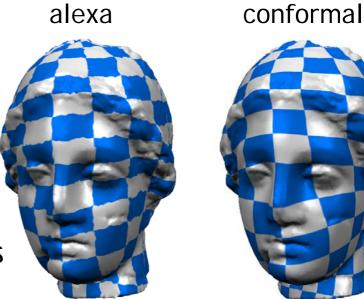
Conformal mapping

A mapping $f: M \mapsto S^2$ M : mesh S^2 : sphere

f is conformal if $\mathbf{I}^{M} = \boldsymbol{\mu}(\boldsymbol{u},\boldsymbol{v})\mathbf{I}^{S^{2}}$

 $\mathbf{I}^{M},\mathbf{I}^{S^{2}}:$ The first fundamental form

 $\mu(u,v)$: A scalar function for parameters $(u,v) \in S^2$



An Approach of [Gu et al. 2004]

- Based on steepest decent method
- Two steps approach:
 - Tutte mapping
 - Conformal mapping
- Simple iterative procedure

Tutte mapping algorithm

1. Compute Gauss map: $N: M \mapsto S^2$ (a set of vertex normals) \rightarrow initial parameter value x(v)2. For each vertex vupdate: $x'(v) = x(v) + c_t \overline{Dx(v)} \delta x$ $Dx(v) = \Delta x(v) - (\Delta x(v) \cdot x(v))x(v)$

$$\Delta x(v) = \sum_{e=(u,v)} (x(u) - x(v))$$

c_t: Tutte parameter (user-specified)

Tutte mapping algorithm (cont'd)

3. Compute Tutte Energy

$$E = \sum_{e} ||x(u) - x(v)||^{2}$$

If $|E - E_{0}| < \varepsilon$, terminate the algorithm.
else, return 2.

Conformal mapping algorithm

- The algorithm is almost the same with Tutte mapping
- Initial value: the result of Tutte mapping

$$x'(v) = x(v) + \underline{c_c} Dx(v) \delta x$$

c_c: Conformal parameter (user-specified)

$$\Delta x(v) = \sum_{e=(u,v)} (a_{v,u}^{\alpha} + a_{v,u}^{\beta}) (x(u) - x(v))$$

Harmonic Energy: $E = \sum (\alpha^{\alpha} + \alpha^{\beta})$

$$E = \sum_{e} (\underline{a_{v,u}^{\alpha} + a_{v,u}^{\beta}}) || x(u) - x(v) |$$

Discussion: Gu et al's approach

User-specified parameters c_{t} , c_{c}

- have to be set to appropriate values ... difficult
 - too small c_t, c_c ... slow iteration
 - too large c_v, c_c ... computation failure (not embedding)
- depends on mesh geometry

→ Try-and-error

Hierarchical Approach

- Similar to [Sander et al. 2002, Ray and Levy 2003, Praun and Hoppe 2003]
- Use Progressive Mesh [Hoppe 96]
 - Coarse-to-fine (multi-level) strategy
 Results in one level are used as initial guess in finer level
- Global Optimization
 - Computed in each level
 - Based on using priority queue

Computing Initial Value

- Simplify an original mesh to create a progressive mesh
- Start from a coarse mesh (roughly 100-1000 vertices)
- Use [Alexa 2000] to compute a spherical embedding of a coarse mesh
 - Most robust for a coarse mesh
 - Quality is not so important in this stage

Vertex-Based Optimization

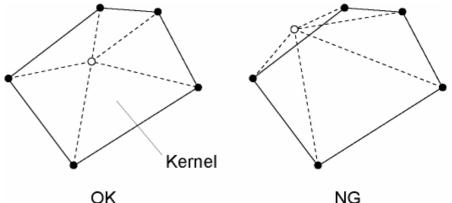
- Use vertex split operation to increase vertices of a mesh
- Apply vertex-based optimization for each of two newly-created vertices
- the number of mesh vertices in each level is multiplied by a constant factor (eg. 2) (200, 400, 800, 1600 ...)



Vertex-Based Optimization (Cont'd)

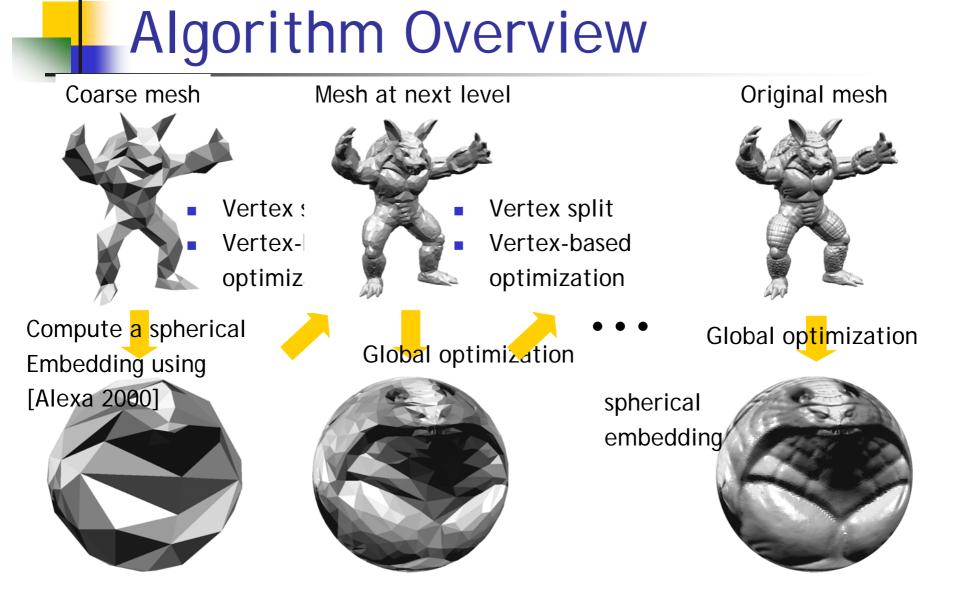
Apply Gu et al's approach for a vertex

- Initial guess: a parameter of its parent's
- Update parameter ... the same formula as Gu et al.'s approach
- Optimization terminates if | E E₀ |< ε
 E: Tutte (or Harmonic) Energy defined for neighbor vertices
- Check whether a new parameter is inside a kernel



Global Optimization

- 1. Compute $dE = E(v) E_0(v)$ for each vertex
- 2. Store *dE* to priority queue as a key
- 3. Apply delete min. (update vertex)
- 4. Update *dE* for neighbor vertices
- 5. Optimization terminates if $dE < \varepsilon$. Else, return 3.



Experiments

- Two models
- Gu et al.'s approach
 - Different c_t and c_c
- Our approach

2,832 vertices

172,974 vertices

- Hierarchical solution: yes or no
- Initial solution: original or progressive
- Global optimization: original or pri. queue

Results #1: Triceratops

Gu et al.'s approach

	coe	ffs.	embed.	time (sec.)			
	c_t	C_{c}		tutte	conf.	total	
(1)	$5.0 imes 10^{-2}$	$5.0 imes 10^{-3}$	×	-	-	-	
(2)	$3.0 imes 10^{-2}$	$3.0 imes 10^{-4}$	×	19.1	-	-	
(3)	$3.0 imes 10^{-2}$	$2.0 imes 10^{-4}$	\bigcirc	19.0	129.9	148.9	
(4)	$2.0 imes 10^{-2}$	$2.0 imes 10^{-4}$	\bigcirc	23.1	121.3	144.4	
(5)	$1.0 imes 10^{-2}$	$1.0 imes 10^{-4}$	\bigcirc	40.8	155.1	195.9	
(6)	$5.0 imes 10^{-3}$	$1.0 imes 10^{-4}$	×	73.6	161.1	234.7	
(7)	$1.0 imes 10^{-3}$	$1.0 imes 10^{-4}$	\times	235.4	171.7	407.1	
(8)	$1.0 imes 10^{-4}$	$1.0 imes 10^{-4}$	\times	1034.6	314.0	1348.6	
(9)	$1.0 imes 10^{-4}$	$1.0 imes 10^{-5}$	\times	961.1	403.1	1364.2	

Results #1: Triceratops

Our approach

COG	hier.	init.	optim.	embed.	total time	
c_t	c_c					(sec.)
2.0×10^{-2}	2.0×10^{-4}	no	prog.	orig.	\bigcirc	372.1
2.0×10^{-2}	2.0×10^{-4}	yes	prog.	orig.	\bigcirc	177.2
1.0×10^{-1}	$1.0 imes 10^{-2}$	no	prog.	pri.	\bigcirc	176.0
1.0×10^{-1}	$1.0 imes 10^{-2}$	yes	prog.	pri.	\bigcirc	57.3

Narrow range of parameters (Gu et al.) ... needs try-and-error

(c_t : 1.0x10⁻²--3.0x10⁻², c_c : 1.0x10⁻⁴--2.0x10⁻⁴)

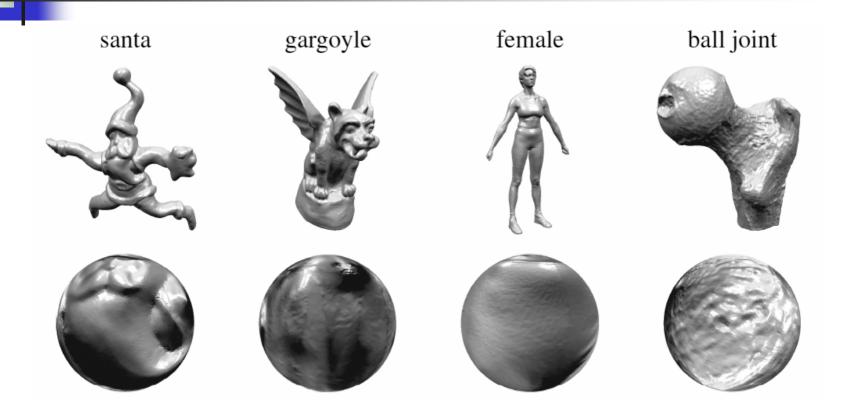
• Computation time:

144.4 s (Gu et al. with try-and-error parameter settings) vs.

57.3 s (Ours without try-and-error)

Results #2: Armadillo

	type	c_t	C_{c}	hier.	init.	optim.	embed.	time (sec.)
(1)	Alexa	-	-	no	orig.	orig.	×	1,389.0
(2)	Gu et al.	$2.0 imes 10^{-1}$	$1.0 imes 10^{-3}$	no	orig.	orig.	0	5,518.7
(3)	Gu et al.	$1.0 imes10^{-1}$	$1.0 imes 10^{-3}$	no	orig.	orig.	×	8,385.3
(4)	Hier. Conf.	$1.0 imes 10^{-1}$	$1.0 imes 10^{-3}$	no	prog.	orig.	0	20,370.5
(5)	Hier. Conf.	$1.0 imes 10^{-1}$	$1.0 imes 10^{-3}$	yes	prog.	orig.	0	3,861.1
(6)	Hier. Conf.	$1.0 imes 10^{-1}$	$1.0 imes 10^{-1}$	no	prog.	pq.	0	2,065.0
(7)	Hier. Conf.	$1.0 imes 10^{-1}$	$1.0 imes 10^{-1}$	yes	prog.	pq.	0	830.1



	pai	horse	venus	bunny	santa	gargoyle	female	ball joint
#vertices	12,344	19,851	33,591	34,817	75,781	100,002	121,723	137,062
total time (sec.)	100.0	206.3	228.7	1,322.3	354.3	907.2	719.4	923.3

Conclusion and Future Work

Conclusion

- Hierarchical Computation of Conformal Spherical Embeddings
 - Robust (always holds embeddings)
 - Fast (roughly 3-10 times faster than Gu et al.'s original approach)
 - Parameter-independent (NO try-and-error)

Future Work

- Other types of parameterizations (area-preserving, mean value coordinates, ...)
- Constrained parameterization
- Applications using spherical parameterization

Acknowledgements

- Prof. Xianfeng Gu (Univ. of Florida, USA)
 Mr. Alexandre Gouaillard
 - (INSA de Lyon, France)
 - ... for useful discussion

Thank you for your attention!