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Parameterization
… maps (a part of ) a mesh to a simpler 

primitive

(plane, sphere, cylinder, octahedron, …)

Fundamental technique of DGP
Used for Applications such as texture 
mapping, remeshing, morphing, surface 
reconstruction etc.



Spherical Parameterization
… maps a genus zero mesh to a sphere

Consistent for a whole region of a mesh
Can perform some geometric processing 
applications easily (ex. remeshing, morphing)
need not to consider about the boundary



Related Work
[Kent et al., SIGGRAPH 92]

… can only apply for a star-shape object
[Alexa, Vis. Comp. 2000]

… simple and fast, but low-quality and flipping
in some cases

[Praun and Hoppe, SIGGRAPH 2003]
… stretch-minimizing spherical parameterization

[Gotsman et al. SIGGRAPH 2003]
… generalization of Tutte’s mapping

[Gu et al. IEEE TMI 2004]
… simple solution for conformal mapping



Our Contribution

Hierarchical computation of conformal
spherical parameterization

Extension to [Gu et al. 2004]
Keeps conformity
Robust and fast
(User-specified) parameter-independent 

… free to try-and-error!



Conformal mapping

A mapping

f is conformal if

2: SMf a
M : mesh 2S : sphere

:),( vuµ

:,
2SM ΙI

The first fundamental form

A scalar function for parameters 

2

),( SM vu II µ=

2),( Svu ∈

alexa conformal



An Approach of [Gu et al. 2004]

Based on steepest decent method
Two steps approach:

Tutte mapping 
Conformal mapping

Simple iterative procedure



Tutte mapping algorithm

1. Compute Gauss map:
(a set of vertex normals) 

initial parameter value x(v)
2. For each vertex v

update: 
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Tutte mapping algorithm 
(cont’d)

3. Compute Tutte Energy

If                      , terminate the algorithm.
else, return 2.
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Conformal mapping algorithm
The algorithm is almost the same with Tutte
mapping
Initial value: the result of Tutte mapping
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Discussion: Gu et al’s approach

User-specified parameters ct, cc
have to be set to appropriate values      
… difficult

too small ct, cc … slow iteration
too large ct, cc … computation failure

(not embedding)
depends on mesh geometry

Try-and-error



Hierarchical Approach
Similar to [Sander et al. 2002, Ray and Levy 2003, 

Praun and Hoppe 2003]
Use Progressive Mesh [Hoppe 96]

Coarse-to-fine (multi-level) strategy
Results in one level are used as initial guess in finer 
level

Global Optimization
Computed in each level
Based on using priority queue 



Computing Initial Value
Simplify an original mesh to create a progressive 
mesh
Start from a coarse mesh (roughly 100-1000 vertices)
Use [Alexa 2000] to compute a spherical embedding 
of a coarse mesh

Most robust for a coarse mesh
Quality is not so important in this stage



Vertex-Based Optimization
Use vertex split operation to increase vertices of a 
mesh
Apply vertex-based optimization for each of two 
newly-created vertices
the number of mesh vertices in each level is  
multiplied by a constant factor (eg. 2)
(200, 400, 800, 1600 …)



Vertex-Based Optimization
(Cont’d)

Apply Gu et al’s approach for a vertex
Initial guess: a parameter of its parent’s
Update parameter … the same formula as Gu et 
al.’s approach
Optimization terminates if 
E: Tutte (or Harmonic) Energy defined for

neighbor vertices
Check whether a new 
parameter is inside a 
kernel

ε<− || 0EE



Global Optimization

1. Compute dE = E(v)-E0(v) for each 
vertex

2. Store dE to priority queue as a key
3. Apply delete min. (update vertex)
4. Update dE for neighbor vertices
5. Optimization terminates if          . 

Else, return 3.
ε<dE



Algorithm Overview
Coarse mesh

Compute a spherical 
Embedding using
[Alexa 2000]

Vertex split
Vertex-based 
optimization

Global optimization

Mesh at next level

Vertex split
Vertex-based 
optimization

Original mesh

spherical 
embedding

Global optimization



Experiments
Two models
Gu et al.’s 
approach

Different ct and cc

Our approach
Hierarchical solution: yes or no
Initial solution: original or progressive
Global optimization: original or pri. queue

2,832 vertices 172,974 vertices



Results #1: Triceratops
Gu et al.’s approach



Results #1: Triceratops
Our approach

Narrow range of parameters (Gu et al.) … needs try-and-error
(ct:  1.0x10-2--3.0x10-2, cc: 1.0x10-4--2.0x10-4)

Computation time: 
144.4 s (Gu et al. with try-and-error parameter settings)

vs. 
57.3 s (Ours without try-and-error)



Results #2: Armadillo



Other Results



Conclusion and Future Work
Conclusion

Hierarchical Computation of Conformal Spherical 
Embeddings

Robust (always holds embeddings)
Fast (roughly 3-10 times faster than Gu et al.’s original 
approach)
Parameter-independent (NO try-and-error)

Future Work
Other types of parameterizations (area-preserving, mean value 
coordinates, …)
Constrained parameterization
Applications using spherical parameterization
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