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ABSTRACT
We introduce a motion retargeting framework capable of animating
characters with distinct skeletal structures using video data. While
prior studies have successfully performed motion retargeting be-
tween skeletons with different structures, retargeting noisy and
unnatural motion data extracted frommonocular videos has proved
challenging. Addressing this issue, our approach proposes a deep
learning framework, retargeting motion data procured from easily
accessible monocular videos, to animate characters with diverse
skeletal structures. Our approach is aimed at providing support for
individual creators in character animation.

Our proposed framework pre-processes motion data derived
from multiple monocular videos by two-stage pose estimation, us-
ing this as the training dataset for Skeleton-Aware Motion Retar-
geting Network (SAMRN). In addition, we introduce a loss function
for the rotation angle of the character’s root node to address the
rotation issue inherent in SAMRN. Furthermore, by incorporating
motion data extracted from videos and adding a loss function for
the character’s root node and end-effector’s velocities, the proposed
method makes it possible to generate natural motion data that is
closely aligned with the source video. We demonstrate the effective-
ness of the proposed framework for motion retargeting between
monocular videos and various characters through both qualitative
and quantitative evaluations.
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1 INTRODUCTION
Motion Retargeting, widely used in character animations, involves
editing the motion data of a source character to fit a target character.
The process of creating 3D character animations typically includes
3D character modeling, human motion capture, and retargeting to
the target character. Still, the high costs associated with motion
capture limit its accessibility for individuals pursuing 3D character
animations for personal interests. In contrast, video-sharing plat-
forms aboundwith diverse motion data uploaded daily. However, no
existing framework effectively harnesses this abundant monocular
video movement data to generate 3D character animations.

This paper introduces a deep-learning framework dedicated
to generating character animations from monocular videos. Our
method simplifies the character animation creation process by ex-
tracting motion data from monocular videos and automatically
transferring it to various character skeleton models. However, some
virtual characters deviate from the typical human structure, posing
particular challenges for motion retargeting. One existing approach,
the Skeleton-Aware Motion Retargeting Network (SAMRN) [Aber-
man et al. 2020], aids in motion retargeting for characters with
differing joint counts, utilizing motion capture datasets. Never-
theless, motion data directly extracted from videos through pose
estimation often contains significant noise and may not align with
the data structure required by the retargeting network.

In our paper, we make the following contributions:
• We devise a method to quickly generate training datasets for
SAMRN from monocular videos, encompassing an extensive
volume of stable motion data with minimal noise.

• We present a method to resolve the problem of artifacts in
root rotation data when employing SAMRN.

• We introduce two loss functions that leverage 2D motion
data estimated from videos to create character animations
that closely match the original videos.

We validate the effectiveness of our proposed method through qual-
itative and quantitative evaluations conducted in our experiments.

2 RELATEDWORK
In this section, we will explore two networks related to our method:
a pose estimation network and a motion retargeting network.

2.1 Pose Estimation from Monocular Videos
Here, we will review pose estimation from monocular images or
videos, specifically focusing on deep neural network approaches.

2D pose estimation can be categorized into two approaches:
top-down and bottom-up. The top-down method involves detect-
ing humans in the images and performing 2D keypoint detection
for each individual [Chen et al. 2018]. In contrast, the bottom-up
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method first detects all keypoints in the image and then groups
them for each individual [Cao et al. 2021]. Regarding 3D pose esti-
mation, recent years have seen the emergence of various methods,
particularly in the realm of deep learning [Zheng et al. 2023]. These
methods can be broadly classified into two types. The first type is an
end-to-end approach that directly estimates 3D poses from images
and videos [Kocabas et al. 2020; Pavlakos et al. 2018; Tripathi et al.
2023]. The second type involves estimating 2D poses from images
and videos and then converting them into 3D poses. Numerous
methods exist for this mapping from 2D to 3D poses [Gong et al.
2023; Li et al. 2022; Martinez et al. 2017; Zhang et al. 2022].

In our proposed framework, we present a fast and automated
method for generating high-quality datasets tailored for training
SAMRN. This approach leverages the 2D pose estimator OpenPose
[Cao et al. 2021] and the 3D pose estimator developed by Pavllo et
al. [Pavllo et al. 2019].

2.2 Motion Retargeting
In the early days of motion retargeting, numerous methods necessi-
tated the manual design of kinematic constraints for target actions,
which made the process intricate [Gleicher 1998; Lee and Shin 1999;
Tak and Ko 2005]. However, in recent years, we have witnessed a
surge in motion retargeting methods that harness deep learning
techniques [Jang et al. 2018; Villegas et al. 2018]. Nonetheless, these
methodologies have not yet tackled the challenges posed by dis-
crepancies in skeleton structures between the source and target
characters.

The Skeleton-Aware Motion Retargeting Network (SAMRN), as
introduced by Aberman et al. [Aberman et al. 2020], capitalizes on
its ability to map different homeomorphic skeletons to a shared
primal skeleton using pooling operations. This capability simplifies
the process of retargeting for characters with varying joint counts.
Nevertheless, SAMRN may encounter challenges when applied to
video data. Specifically, the retargeted motion generated by SAMRN
can appear unnatural if the character’s rotation exceeds a certain
threshold, as illustrated in Figure 2. To address this issue, we propose
a framework that can adapt motion data from monocular videos to
suit SAMRN and introduce a loss function aimed at mitigating the
rotation problem.

3 METHOD
3.1 Overview
The overall framework of our motion retargeting network, which
transforms monocular videos into animations for various charac-
ters, is depicted in Figure 1. In the training phase, we initiate a
two-stage pose estimation process on multiple monocular videos
(Section 3.2). In the first stage, we extract actor keypoints in each
frame through 2D pose estimation, perform denoising, and choose
motion data based on joint position confidence values generated by
OpenPose [Cao et al. 2021]. The preprocessed 2D poses are then con-
verted into 3D motion data using VideoPose3D [Pavllo et al. 2019].
This step involves adjusting the data structure of the 3D motion
data generated by VideoPose3D and aligning it with the rest pose of
the target character. The resulting 3D motion data, along with the
motion data from the existing character animation dataset Mixamo

[Inc. 2023], are used as the source character and target character mo-
tion data for training SAMRN, respectively. To tackle the rotation
issue in SAMRN, we introduce a root node rotation loss function
aimed at mitigating artifacts in the root rotation data present in
the retargeted motion (Section 3.3). In contrast to SAMRN, which
takes 3D motion data as both input and output, our approach relies
on video data as input. Consequently, we incorporate a 2D root
and end-effector velocity loss function to generate motion data that
closely corresponds to the original video, utilizing the preprocessed
2D poses. Additionally, we introduce a balance loss function to
enhance the naturalness of the character’s movements.

In the testing phase, both the motion data employed during the
training phase and the motion data estimated from new videos are
fed into the pretrained retargeting network as input.

3.2 Preprocessing Data Derived from Videos
To train SAMRN, we first create a training dataset, which consists
of source motion data derived from multiple monocular videos
through pose estimation and the motion data of the target character
in the existing animation dataset Mixamo. It’s important to note
that the video-derived data may contain noise and unrealistic poses
that could impact SAMRN’s training process. Futhermore, to use
pose estimation data from a video as input for SAMRN, the data
structure and the character’s rest pose must match the network
and the target character motion data. Therefore, we utilize the
pose estimator VideoPose3D, which fulfills the requirements of
SAMRN’s learning data.

In our framework, we employ a two-stage pose estimator com-
posed of a 2D pose estimator and a 3D pose estimator. Due to the
extensive time required for manual selection of data from videos
to create a dataset of tens of thousands of frames, we perform an
automated selection and denoising procedure prior to generating
the 3D results from the 2D poses using detection confidence values
outputted by OpenPose.

For joints with a detection confidence value of 0.3 or less, we com-
pute the joint positions using interpolation from adjacent frames
with relatively high detection confidence. The choice of 0.3 as the
threshold was based on our experiments. Additionally, when en-
countering a sequence of more than ten frames containing a signif-
icant number of joints with low detection confidence, interpolation
becomes challenging. As a result, we remove these frames and split
the motion data. After producing the 3D motion data, we adjust the
skeleton’s size and the initial state of the source character’s rest
pose to match the target character before training.

3.3 Adding Loss Functions
The intrinsic loss function of SAMRN calculates the difference be-
tween the retargeting results produced by the retargeting network
and the source motion corresponding to these results. Considering
the inclusion of monocular video as the network input and the
rotational challenges within SAMRN, we will now describe the
distinct loss functions employed in our adaptation of SAMRN.

3.3.1 Root Rotation Loss. As mentioned earlier, SAMRN encoun-
ters a rotation issue where character movements appear unnatural
when they undergo rotations exceeding 180 degrees, as depicted in
Figure 2. We hypothesize that this issue arises from the absence of a
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Figure 1: Overview of our method.

Figure 2: The keyframes depict a character making a 180-
degree turn. Thefirst row represents the sourcemotion,while
the second row displays the retargeted motion.

comparative analysis of the root rotation data between source and
retargeted motion during the network learning process. Therefore,
we introduce a loss term for the root node’s rotation. Since the
accuracy of root rotation data may affect the motion data of other
joints in the generator of SAMRN, we employ a loss function to
address the rotation issue rather than aligning the root rotation
data between source and retargeted motion.

𝐿𝑟𝑜𝑜𝑡𝑟𝑜𝑡 =
∑︁
𝑡



𝑞𝑢𝑎𝑡2𝑒𝑢𝑙 (𝑞𝑡,𝑟𝑜𝑜𝑡 ) − 𝑒𝑡,𝑟𝑜𝑜𝑡 

, (1)

where 𝑡 denotes the frame ID, 𝑞𝑡,𝑟𝑜𝑜𝑡 signifies the rotational angle
of the root node represented by a unit quaternion in the retargeting
result at frame 𝑡 . The term 𝑒𝑡,𝑟𝑜𝑜𝑡 represents the rotation angle of
the root node as delineated in Euler angles within the source motion.
𝑞𝑢𝑎𝑡2𝑒𝑢𝑙 (·) denotes the function of transforming quaternions into
Euler angles.

3.3.2 2D Root & End-Effector Velocity Loss. SAMRN utilizes 3D
motion data exclusively; video data, the primary input data, is not
used in the retargeting network. To address the loss of motion
information when generating 3D motion data from the video, it’s

crucial to incorporate video data into SAMRN’s learning process. To
achieve this, we apply two essential loss terms: a 2D root velocity
loss and a 2D end-effector loss. These losses guarantee that the
retargeted motion preserves the same motion features for both the
root node and end-effectors, as seen in the source video.

𝐿2𝐷𝑟𝑜𝑜𝑡 =
∑︁
𝑡





Π [
𝐹𝐾 (𝑞𝑡,𝑟𝑜𝑜𝑡 ) − 𝐹𝐾 (𝑞𝑡−1,𝑟𝑜𝑜𝑡 )

ℎ3𝐷

]
−
(
𝑝𝑡,2𝐷𝑟𝑜𝑜𝑡 − 𝑝𝑡−1,2𝐷𝑟𝑜𝑜𝑡

ℎ2𝐷

)



 , (2)

𝐿2𝐷𝑒𝑒 =

𝑒𝑒∑︁
𝑗

∑︁
𝑡





Π [
𝐹𝐾 (𝑞𝑡, 𝑗 ) − 𝐹𝐾 (𝑞𝑡−1, 𝑗 )

ℎ3𝐷

]
−
(
𝑝𝑡,2𝐷 𝑗 − 𝑝𝑡−1,2𝐷 𝑗

ℎ2𝐷

)



 , (3)

where 𝑞𝑡, 𝑗 symbolizes the rotation angle of joint 𝑗 represented by
a unit quaternion in the retargeted result at frame 𝑡 , and 𝑝𝑡,2𝐷𝑟𝑜𝑜𝑡

denotes the 2D root node position extracted from the video at frame
𝑡 . The parameters ℎ2𝐷 and ℎ3𝐷 represent the character’s height,
which corresponds to the bone length from the head joint to the foot
joint in both 2D and 3D. The function 𝐹𝐾 (·) signifies the forward
kinematics function, while Π(·) represents the projection function
used to convert from 3D to 2D.

3.3.3 Balance Loss. The position coordinates of the root node in
the 3D motion estimated from videos are derived from 2D poses
and lack depth information. Consequently, the character may take
unbalanced poses, such as forming an improbable angle with the
ground. To address this, we introduce a balance loss function to
maintain the equilibrium of the character during retargeting.

𝐿𝑏𝑎𝑙𝑎𝑛 =
∑︁
𝑡



(𝐹𝐾 (𝑞𝑡,ℎ𝑒𝑎𝑑 ) − 𝐹𝐾 (𝑞𝑡,𝑟𝑜𝑜𝑡 ))
−
(
𝐹𝐾 (𝑞𝑡,ℎ𝑒𝑎𝑑 ) − 𝐹𝐾 (𝑞𝑡,𝑟𝑜𝑜𝑡 )

)

 , (4)
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where 𝑞𝑡,ℎ𝑒𝑎𝑑 and 𝑞𝑡,ℎ𝑒𝑎𝑑 represent the rotation angle of the head
joint in the retargeted motion and the source motion at frame 𝑡 ,
respectively. The term 𝐹𝐾 (𝑞𝑡,ℎ𝑒𝑎𝑑 ) calculates the position coordi-
nates of the head joint, while 𝐹𝐾 (𝑞𝑡,𝑟𝑜𝑜𝑡 ) represents the position
coordinates of the root node. Thus, the directional vector of the
character’s head relative to the root node in the retargeting result
is given by 𝐹𝐾 (𝑞𝑡,ℎ𝑒𝑎𝑑 ) − 𝐹𝐾 (𝑞𝑡,𝑟𝑜𝑜𝑡 ).

3.3.4 Total Loss. Consequently, we provide the full loss function
used for training below.

𝐿 = 𝐿𝑜𝑟𝑖𝑔𝑖𝑛 + 𝜔𝑟𝑜𝑜𝑡𝑟𝑜𝑡𝐿𝑟𝑜𝑜𝑡𝑟𝑜𝑡 + 𝜔2𝐷𝑟𝑜𝑜𝑡𝐿2𝐷𝑟𝑜𝑜𝑡

+𝜔2𝐷𝑒𝑒𝐿2𝐷𝑒𝑒 + 𝜔𝑏𝑎𝑙𝑎𝑛𝐿𝑏𝑎𝑙𝑎𝑛,
(5)

where 𝐿𝑜𝑟𝑖𝑔𝑖𝑛 denotes the loss function of the original SAMRN.
During experiments with data extracted from videos, we assigned
weights as 𝜔2𝐷𝑟𝑜𝑜𝑡 = 1000, 𝜔2𝐷𝑒𝑒 = 100, 𝜔𝑏𝑎𝑙𝑎𝑛 = 300. The
root rotation loss was not used in video-based motion retarget-
ing training due to slight unnaturalness. However, we conducted
separate experiments on the rotation issue using 3D motion data
with 𝜔𝑟𝑜𝑜𝑡𝑟𝑜𝑡 = 20 to demonstrate the effectiveness of the root
rotation loss.

4 RESULTS AND DISCUSSION
4.1 Experimental Setting
In this section, we will introduce the experimental environment
and data used for our approach. The proposed method was imple-
mented in Python, utilizing the PyTorch framework for training our
network. The computational resources utilized for the experiments
included two NVIDIA® RTX™ 2080Ti GPUs. It is worth mention-
ing that the training process, which spanned 2,000 epochs, took
approximately two hours.

For the experimental data, we utilized a dataset consisting of a
total of 100,000 frames capturing the movements of both the source
and target characters, which were derived from videos. The motion
data for the source character consists of 40,000 frames obtained
through pose estimation from over 20 distinct monocular videos
featuring individual subjects. Notably, some of these videos are
sourced from SFV [Peng et al. 2018]. The motion data for the target
characters was sourced from the online platform Mixamo, totaling
60,000 frames of motion data. Throughout the learning process, a
batch size of 256 was used, and the training was carried out for
2,000 epochs.

To evaluate the effectiveness of the root node rotation loss func-
tion, we trained networks exclusively utilizing this loss function.
The training data consisted of 120,000 frames of motion data from
Mixamo, used for both the source and target character datasets.
The training process comprised 5,000 epochs.

4.2 Qualitative Evaluations
Figure 3 showcases the retargeting results achieved through the
application of our proposed method on video data. To further assess
the quality of the retargeting results, we encourage readers to refer
to our supplementary video, which provides a qualitative evaluation
of the retargeted motions generated by our method. The results
demonstrate that the characters faithfully replicate the movements
of the individuals in the original video. These findings underscore

the effectiveness of our proposed method in naturally retargeting
motion from videos onto characters. However, it is important to
note that since the proposed method generates skeleton animations
without considering the character’s model, certain results may
exhibit issues of self-contact. Additionally, it is evident that there
is an issue where the feet do not make proper contact with the
ground. We present the effectiveness of the proposed framework,
including the retargeting results when directly applied to videos
using SAMRN, as well as the impacts of implementing various loss
functions in the supplementary video. In Figure 4, it is evident
that with the incorporation of the root rotation loss function, the
character’s 180-degree rotation no longer exhibits the common
rotation issue observed in SAMRN.

4.3 Quantitative Evaluations
Due to the absence of correct motion data for distinct characters
corresponding to monocular videos, we employ two metrics, rel-
ative distance metric and relative velocity metric, for quantitative
assessment comparing the movement characteristics between the
source video and the retargeted motion. The quantitative evalua-
tions aim to measure the similarity between the retargeted motion
and the original videos.

4.3.1 Relative distance metric. We normalize the preprocessed 2D
pose extracted from the video, which had undergone denoising
and selecting, and the corresponding 3D pose from the retargeting
results in each frame based on the length of the bones. The preci-
sion of the results is then evaluated by measuring the similarity of
their end-effectors. We then compute the evaluation metric 𝐸𝑑𝑖𝑠
for relative distance as follows:

𝑙𝑡, 𝑗 = Π

[
𝐹𝐾 (𝑞𝑡, 𝑗 ) − 𝐹𝐾 (𝑞𝑡,𝑟𝑜𝑜𝑡 )

𝐾𝐶𝑟𝑜𝑜𝑡,𝑗,3𝐷

]
, (6)

𝐿𝑡, 𝑗 =
𝑝𝑡, 𝑗 − 𝑝𝑡,2𝐷𝑟𝑜𝑜𝑡

𝐾𝐶𝑟𝑜𝑜𝑡,𝑗,2𝐷
, (7)

𝑃𝑟𝑜𝑝𝑡, 𝑗 =


𝑙𝑡,𝑗
𝐿𝑡,𝑗

(
𝐿𝑡,𝑗
𝑙𝑡,𝑗

≤ 1
)

𝐿𝑡,𝑗
𝑙𝑡,𝑗

(
𝐿𝑡,𝑗
𝑙𝑡,𝑗

> 1
) , (8)

𝐸𝑑𝑖𝑠 =
1
𝑇𝑒𝑒

𝑒𝑒∑︁
𝑗

∑︁
𝑡

𝑃𝑟𝑜𝑝𝑡, 𝑗 , (9)

where 𝑙𝑡, 𝑗 denotes the relative distance from the root node to end-
effector 𝑗 in the 𝑡-th frame of the 3D motion, while 𝐿𝑡, 𝑗 signifies
the relative distance between the root node and end-effector 𝑗 in
the 𝑡-th frame of the 2D motion. 𝑃𝑟𝑜𝑝𝑡, 𝑗 is the ratio of the 2D to 3D
relative distances, whereas 𝐾𝐶𝑟𝑜𝑜𝑡,𝑗,3𝐷 and 𝐾𝐶𝑟𝑜𝑜𝑡,𝑗,2𝐷 represent
the lengths of the kinematic chains from the root node to end-
effector 𝑗 in 3D and 2D, respectively.

4.3.2 Relative velocity metric. We calculate the relative velocity
of each end-effector by considering the relative distance from the
root node. A smaller difference in the end-effector velocities be-
tween the 2D motion data extracted from the video and the 3D
retargeted motion indicates a higher level of similarity between the
two movements. We then compute the relative velocity metric 𝐸𝑣𝑒𝑙
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Figure 3: Motion retargeting results from a monocular video to a target character, including the motion data extracted from the
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Figure 4: Motion retargeting results from 3D motion data demonstrate that the rotation issue within SAMRN can be resolved by
incorporating the root node rotation angle loss function.

as follows:

𝑣𝑡, 𝑗 = 𝑙𝑡, 𝑗 − 𝑙𝑡−1, 𝑗 , (10)
𝑉𝑡, 𝑗 = 𝐿𝑡, 𝑗 − 𝐿𝑡−1, 𝑗 , (11)

𝐸𝑣𝑒𝑙 =
1
𝑇𝑒𝑒

𝑒𝑒∑︁
𝑗

∑︁
𝑡



𝑣𝑡, 𝑗 −𝑉𝑡, 𝑗 

 , (12)

where 𝑣𝑡, 𝑗 represents the relative velocity of end effector 𝑗 in frame
𝑡 of the 3D motion, and 𝑉𝑡, 𝑗 signifies the relative velocity in the 2D
motion.

Table 1 displays the relative distance metric results for the repre-
sentative fourmotions, while Table 2 showcases the relative velocity
metric results. For improved clarity, the velocity results are scaled by
a factor of 100. Following the retargeting of motion data extracted
from 16 videos (15,000 frames) to Mixamo’s character “Vampire A
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Table 1: Relative distance metric.

Jumping
Jacks

Long
Dance Gymnastics Wood

Chopper

SA
M
RN No Preprocessing

Loss 1.44 1.52 1.77 1.52

O
ur
s

No 2D Root &
End-Effector Loss 1.38 1.30 1.34 1.21

No Balance Loss 1.34 1.41 1.48 1.26
Full Loss 1.38 1.28 1.50 1.26

Table 2: Relative velocity metric. (multipled by 100)

Jumping
Jacks

Long
Dance Gymnastics Wood

Chopper

SA
M
RN No Preprocessing

Loss 5.51 1.93 2.28 2.38

O
ur
s

No 2D Root &
End-Effector Loss 5.38 1.67 2.08 2.14

No Balance Loss 4.71 1.41 2.07 2.18
Full Loss 5.09 1.77 2.06 2.13

Lusth,” we compute the mean joint error for the two evaluation
metrics and present a subset of the corresponding results here. The
full content of each motion and complete quantitative evaluation
results can be found in the supplemental material.

In the quantitative evaluation, our method consistently produces
character animations that exhibit a higher degree of naturalness
and closely resemble real videos in comparison to applying SAMRN
directly to videos. Nevertheless, it’s crucial to note that when ex-
amined individually, the introduction of a loss function based on
movements may inadvertently affect the performance metrics.

5 CONCLUSIONS AND FUTUREWORK
In our proposed method, we have developed a framework for re-
targeting motion data extracted from videos to characters with
different skeletal structures. Our experimental results demonstrate
that our method can generate natural character animations that
effectively reconstruct the original motion of the actors. Specifically,
we apply a series of preprocessing steps to the motion data obtained
from multiple videos through pose estimation. To address the ro-
tation issue, our method incorporates a loss function for the root
node rotation angle in the retargeting network. Furthermore, we
have demonstrated that incorporating the 2D motion information
estimated from the video into the loss function of the retargeting
network leads to improved retargeting results.

In future work, we aim to develop methods for retargeting videos
while estimating depth information from the video itself. Another
challenge that we encounter pertains to the issue of ground contact
in the motion data. We have implemented a method to estimate
contact labels from the video and apply inverse kinematics to the
retargeted motion. However, the results indicate that this problem
has not been completely resolved. Additionally, a notable limitation
of our approach is that the input video must exclusively feature a
single individual against a solid background.
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