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Figure 1: Whole pipeline of GarMatNet.

ABSTRACT
Recent progress in learning-based methods of garment mesh gen-

eration is resulting in increased efficiency and maintenance of real-
ity during the generation process. However, none of the previous
works so far have focused on variations in material types based on
a parameterized material parameter under static poses. In this work,
we propose a learning-based method, GarMatNet, for predicting
garment deformation based on the functions of human poses and
garment materials while maintaining detailed garment wrinkles.
GarMatNet consists of two components: a generally-fitting net-
work for predicting smoothed garment mesh and a locally-detailed
network for adding detailed wrinkles based on smoothed garment
mesh. We hypothesize that material properties play an essential
role in the deformation of garments. Since the influences of material
type are relatively smaller than pose or body shape, we employ
linear interpolation among different factors to control deformation.
More specifically, we apply a parameterized material space based on
the mass-spring model to express the difference between materials
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and construct a suitable network structure with weight adjustment
between material properties and poses. The experimental results
demonstrate that GarMatNet is comparable to the physically-based
simulation (PBS) prediction and offers advantages regarding gen-
eralization ability, model size, and training time over the baseline
model.
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1 INTRODUCTION
Mesh generation of clothed humans benefits a lot of applications

such as virtual try-on, game, digital fashion design, and 3D content
production. With the increasing need for interactive applications,
demands for real-time 3D visualization are increasingly growing.
However, the simulation of garments on the human body is still
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challenging in computer graphics research because of the complex-
ity of garment wrinkles in various poses, body shapes, garment
styles, and garment materials.

Previous works have two research directions. The first one, a
predominant method, is Physically-Based Simulation (PBS), aim-
ing to simulate complex clothing deformations based on physical
equations. Research works such as [Baraff and Witkin 1998; Breen
et al. 1994; Jiang et al. 2017; Nealen et al. 2006; Selle et al. 2009;
Terzopoulos et al. 1987] successfully obtained high-quality results.
However, two problems still exist in high-quality PBS methods:
(a) High computational cost; It usually takes hundreds of hours to
finish the computation. Even for a coarse garment mesh with 3,000
vertices, it still takes nearly 200 ms to compute each frame, making
it almost impossible to satisfy the need for real-time simulation
for daily applications. (b) Requirement for expert knowledge. The
common pipeline of PBS methods usually includes editing the gar-
ment shape in 2D with patterns, manually placing the garment on
the digital character, and setting up hyperparameters such as time
step, material properties, etc., to achieve desired results. Both are
laborious and need expert knowledge, e.g., in the field of fashion
design or numerical simulation.

The second research direction is to build a real-time physically-
aware learning-based method for generating 3D-clothed human
animation. Recent works focus on learning approximate models
from PBS compiled off-line. However,there seems to be no works
exploring types of materials as a feature in the function of garment
deformation under the static human body. However, the material
has substantial effects on the deformation of clothed garments, and
there are countless types of materials in the real world, making the
problem even more challenging.

To tackle the above-mentioned material issue, we herein propose
a learning-based approach, GarmentMaterial Network (GarMatNet),
to generate clothed garment mesh in different parameterized mate-
rials. Inspired by the previous PBS method [Provot 1995], namely,
the mass-spring model, we describe the properties of materials by
using three types of springs and one property of masses. In short,
we leverage a 6-dimensional parameter to represent different mate-
rials, which covers 1006 types of materials. Also, TailorNet [Patel
et al. 2020] shows that it is difficult for neural models to learn due
to detailed wrinkles and the difference between materials. To fur-
ther tackle the learning problem, we design GarMatNet with two
components: a generally-fitting network to dress the clothes on
the human body without detailed wrinkles and a locally-detailed
wrinkle network to add detailed wrinkles to the mesh generated by
the fitting network.

To be more specific, the input of GarMatNet consists of two parts:
a 6-dimensional parameter representing parameterized materials
and a 72-dimensional parameter representing the pose of the human
body. The parameterized materials are based on the mass-spring
method [Provot 1995]. The specific value of this 6-dimensional
parameter for each type of material is determined by the normalized
value from the library provided by a commercial 3D cloth design
and simulation tool Marvelous Designer [CLO Virtual Fashion Inc.
2021], including 67 types of materials which are common to see in
daily life. For pose parameter, we apply SMPL (A Skinned Multi-
Person Linear Model) [Loper et al. 2015], a realistic 3D model of
the human body that is based on skinning and blend shapes and

is learned from thousands of 3D body scans. SMPL [Loper et al.
2015] provides a parameterized human body, including a pose and
body shape. The output of GarMatNet is the deformation vector
from smoothed garment to human body generated by the fitting
network, and deformation vector from detailed-wrinkle garment
to smoothed garment generated by the detailed-wrinkle network.

Our contributions are: (1) We propose the first learning-based
approach as a joint model of parameterized garment’s material and
pose of the body, which is simple yet effective, and generalized well.
(2) Compared to previous methods, our model has higher versatility,
which can predict the deformation of garments made by different
materials that the model has never seen before. (3) Compared to the
PBSmethod, our model consumes less time and computational costs
in realizing real-time simulation. (4) To accelerate further research,
we will make publicly available a dataset with T-shirts made by 67
types of materials, simulated in 738 poses, totaling 49,446 samples.

2 RELATEDWORK
The previous researches in the garment mesh generation field in

the computer graphics community can be divided into two types:
physically-based simulation (PBS) and learning-based methods.
Physically-based garment simulation has been extensively used
in current professional commercial software. However, due to the
associated computational cost and stability concerns, the physically-
based method is not suitable for real-time simulation. Accompany-
ing the development of data science and machine learning, learning-
based simulation has become increasingly popular and has the
potential to be applied to real-time simulation.

2.1 Physically-based simulation
Physically-based simulation methods use discretizations of clas-

sical mechanics to deform the garment by solving an ordinary
differential equation based on Newton’s law [Nealen et al. 2006].
Based on this solution, several approaches by improving numerical
methods, collision detection, and constraints have been proposed
to increase realism, stability or to decrease the computational cost.
However, due to the high computational cost and stability concern,
the performance of the simulation is still limited in some ways.

The first physically-based approach developed in the long his-
tory of garment mesh generation is [Terzopoulos et al. 1987]. This
approach is based on a continuum model and cannot express large
deformations, and nonlinear constraints of garments. After that,
many approaches have been studied, including the general particle
system method [Baraff and Witkin 1998; Breen et al. 1994]. These
methods can express real-world physical phenomena. However,
they lack efficiency due to the need for high resolution or time step
size.

Therefore, one of the primary limitations of physically-based
methods of garment mesh generation is that with higher realism,
higher computational cost is needed. They usually require signif-
icant run-time and make it impossible to apply these methods to
real-time interactive applications. For example, a super-realistic
animation requires a resolution of millions of triangles [Jiang et al.
2017; Selle et al. 2009; Terzopoulos et al. 1987], which is compu-
tationally expensive. A lot of researches focus on increasing the
efficiency of the simulation. For example, the position-basedmethod
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[Müller et al. 2007] can produce approximated but acceptable re-
sults. However, it may lack some realism that cannot be applied for
real-world applications such as fashion design and virtual try-ons.
In addition, projecting the complicated equations of motion into
a simpler subspace [de Aguiar et al. 2010], or subspace method,
has also been proven effective in increasing the computational effi-
ciency. However, the universality of this method is narrow and can
only be used for specific scenes.

Besides the above methods, a simpler physically-based model,
such as mass-spring model [Provot 1995] has been proposed. Provot
builds a mass-spring garment model based on a regular quadrilat-
eral mesh grid. In this work, the relation between each mass point
could be described by three types of springs. Themass-springmodel
simplified the complicated physical properties of the garment, and
the computational efficiency is extremely higher than the general
particle system method, but it still has a problem. This method can
only be applied to the rectangular mesh, which is different from
the triangle mesh commonly used in the Computer Graphics com-
munity. To solve this problem, [Baraff and Witkin 1998] introduced
a mass-spring model for a triangular mesh to expand the scope
of application of the mass-spring model. In addition, some other
works also focus on increasing the efficiency of PBS method, such
as [Fratarcangeli et al. 2016; Wang and Yang 2016].

2.2 Learning-based simulation method
With the recent success of deep learning methods in various

imaging and 3D geometry task, the current research trend is to
learn garment deformation under body motion by applying neural
networks.

Recent researchers [Casas and Otaduy 2018; Lewis et al. 2000]
propose to predict deformation as a function of human poses and
shapes. By combining this above above method and parametric
human body models with per-vertex displacement, other works
[Alldieck et al. 2019; Bhatnagar et al. 2019] successfully increase the
reality of the results. Although these methods have better efficiency
compared to the physically-based simulation method, they only
work well for tight clothes such as t-shirt or pants which are fitted
closely to the body surface without some complicated wrinkles.

Gundogdu et al. [Gundogdu et al. 2019] build GarNet, a three-
step deep neural network to predict the deformation of garments
by extracting garment features at varying levels of detail, includ-
ing point-wise, patch-wise, and global features. Santesteban et al.
[Santesteban et al. 2019] also present a learning-based method for
clothing animation based on a database generated by PBS. Their
approach learns coarse garment shapes based on the body shape
and detailed wrinkles based on pose dynamics. Although their
work can predict garments made of different materials, it requires
independent training per garment material. More recently, Patel
et al. [Patel et al. 2020] have proposed an MLP-based neural net-
work model to predict garment deformation in 3D as a function
of three components: pose, shape, and style (garment geometry),
while maintaining detailed wrinkle. In their work, they decomposed
the complicated deformation of the garment into high-frequency
and low-frequency components. They predict the low-frequency
component from the pose, body shape, and style parameters with
an MLP and predict the high-frequency component by a mixture

of 20 shape-style specific pose models. Although their work is the
first approach to extend the universality of the model to cover pose,
body shape, and garment style, the method still does not deal with
different garment materials. Zhang et al. [Zhang et al. 2021] en-
hance, in a data-driven manner, rich yet plausible details starting
from a coarse garment geometry by applying a normal map of gar-
ment mesh as a feature in their training network. Although their
work can deal with the prediction of garment structure between
different materials, their approach can only transfer the materials
only if the database generated by these materials has been trained
in the network, due to the lack of generalization.

Looking through the history of the learning-based method, we
can see the primary trend in this research field includes: imple-
mentation of a novel deep learning model, expanding the scope
of application, as well as increasing more valuable information as
features. Most of the learning-based methods have higher efficiency
in generating garment mesh compared with the physically-based
simulation method, which means that it has strong potential to be
applied to real-time animation generation. In our work, we focus
on the learning-based method to ensure higher efficiency and lower
requirement of hardware. We also focus on expanding the scope of
application to parameterized materials.

3 METHOD
3.1 Material property space

There are several models capable of describing the properties
of materials such as [Clyde et al. 2017; Miguel et al. 2012; Wang
et al. 2011]. At here, we leverage a material property space inspired
by the mass-spring model [Provot 1995]. The mass-spring model
is a physically-based model for animating cloth objects. Let the
elastic model of a garment be a mesh of𝑚 × 𝑛 virtual masses, and
each mass is linked to its neighbors by several weightless springs of
natural length non-equal to zero. The linkage between two masses
can be described by the following three types in Figure 2:

(1) springs linking masses [𝑖, 𝑗] and [𝑖 + 1, 𝑗], and masses [𝑖, 𝑗]
and [𝑖, 𝑗 +1], are called as “structural springs”, to describe the
force between two adjacent masses in vertical and horizontal
directions;

(2) springs linking masses [𝑖, 𝑗] and [𝑖 + 1, 𝑗 + 1], and masses
[𝑖+1, 𝑗] and [𝑖, 𝑗 +1], are called as "shear springs", in order to
describe the force between two adjacent masses in diagonal
direction;

(3) springs linking masses [𝑖, 𝑗] and [𝑖 + 2, 𝑗], and masses [𝑖 +
1, 𝑗] and [𝑖, 𝑗 + 2], are called as "flexion springs", in order to
describe the force between two distant masses in the vertical
and horizontal directions.

Using these three types of springs, and the weight of each mass
(usually seen as density), we can describe the physical properties of
any material. We conduct our simulation based on the mass-spring
model in Marvelous Designer [CLO Virtual Fashion Inc. 2021],
and change the parameter of materials by changing the elastic
coefficient of the spring in the mass-spring model.

We have a two-dimensional parameter to describe the strength
of structural springs in vertical and horizontal directions separately,
a two-dimensional parameter to describe the strength of flexion
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Figure 2: Mesh structure of mass-spring model.
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Figure 3: Sensitivity test of structural spring and shear
spring.

springs in the vertical and horizontal directions separately, a di-
mensional parameter to describe the strength of shear springs in
the diagonal direction, and a dimensional parameter to describe the
mass or density of the target material. In our method, we denote the
material parameter as ®𝜔 , which consists of those six-dimensional
parameters. The value of ®𝜔 for each type of material is decided by
normalized value from the library provided by Marvelous Designer
[CLO Virtual Fashion Inc. 2021].

To validate the mass-spring model, we conduct the sensitivity
tests under the same pose with different spring strengths. The
results of structural spring and shear spring are shown in Figure 3,
while the results of flexion spring and density are shown in Figure
4. From Figure 3, we found that when the strength of structural
springs is increased in the horizontal and vertical directions, the
garment becomes more rigid in its corresponding direction, and
detailed wrinkles are generated due to the change in the strength
of the springs. This change in the garment more like the difference
in stiffness between soft cotton and hard paper. Also, when shear
springs’ strength increases, the garment becomes stiffer in the
diagonal direction and looks more supportive.

From Figure 4, the change is slightly different from the previous
two types of springs. For flexion spring, it can be seen that with
increasing strength, the material becomes harder, resembling the
change in stiffness from the softness of cotton to the hardness of

Weak

Flexion spring - Vertical Mass - DensityFlexion spring - Horizontal

Strong

Figure 4: Sensitivity test of flexion spring and density.

plastic, and the number of wrinkles decreases. Lastly, the effects
generated by density are easy to understand. When the material
density is increased, it gives us a feeling of sagging, similar to the
skin. Also, when the density becomes extremely large, the stretch
deformation of the garment occurs, leading to the increase in the
length of the original garment.

3.2 GarMatNet
Inspired by TailorNet [Patel et al. 2020], we also divide our pre-

diction model into two parts, a generally-fitting network, and a
locally detailed network. The generally-fitting network is installed
to decrease the task’s difficulty: we firstly predict the displacement
between the human body and a smoothed garment generated by
data processing based on the simulated result. Compared with the
simulated result, a smoothed garment has a more straightforward
structure and fewer small-scale wrinkles, whichmeans that it is easy
to be predicted. Generally-fitting network is designed based onMLP
(Multi-Layer Perceptron) and used for predicting the displacement
between a smoothed garment and human body D𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 ∈ R𝑛×3,
as a function of pose ®\ and type of garment material ®𝜔 . The locally-
detailed network is set for predicting the displacement between
a smoothed garment and simulated garment D𝑙𝑜𝑐𝑎𝑙 ∈ R𝑛×3, also
as a function of pose ®\ and type of garment material ®𝜔 . In total,
we have a two-step prediction model to predict the displacement
between a simulated garment and human body D𝑤ℎ𝑜𝑙𝑒 by Equa-
tion 1. By adding the displacement to the human body, we finally
obtain the mesh of a garment made by the target material under the
corresponding pose. The detailed information about our prediction
model is described in Figure 1.

D𝑤ℎ𝑜𝑙𝑒 ( ®𝜔, ®\ ) = D𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 ( ®𝜔, ®\ ) + D𝑙𝑜𝑐𝑎𝑙 ( ®𝜔, ®\ ) . (1)

Compared to previous researches from Table 1, GarMatNet has
higher versatility than other previous methods by material varia-
tions. This method can produce garments made of different materi-
als, and the number of materials that we can deal with is unlimited.
In addition, we use PBS data as our ground truth, which means our
dataset is easy to expand and costs less than real-captured data.
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Method Pose Variations Material Variation PBS data
Wang et al., 2018 [Wang et al. 2018] No No Yes
TailorNet 2020 [Patel et al. 2020] Yes No Yes

CAPE 2020 [Ma et al. 2020] Yes No No
GarMatNet 2021 Yes Yes Yes

Table 1: Comparison between GarMatNet and previous researches.

3.3 Decomposing the cloth displacement
Inspired by TailorNet [Patel et al. 2020], we hypothesize that it

is hard to directly predict the distance between a simulated gar-
ment and human body D(𝜽 , 𝜔) with MLP. Our experiments show
that this pipeline would make the model hard to learn, and the
prediction results look unreal and lack details. Therefore, we divide
our model into two parts. Generally-fitting network is designed
based on MLP (Multi-Layer Perceptron). It is used for predicting
the displacement between a smoothed garment and human body
D𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 as a function of pose \ and type of garment material ®𝜔 .
The locally-detailed network is set for predicting the displacement
between a smoothed garment and simulated garmentD𝑙𝑜𝑐𝑎𝑙 , also as
a function of pose ®\ and type of garment material ®𝜔 . To create the
label for the training of a generally-fitting network, it is necessary
to decompose the cloth displacement.

In order to decompose the cloth displacement, we use the gar-
ment template topology T𝐺 , and process T𝐺 by Laplacian smooth-
ing [Vollmer et al. 1999]. With Laplacian smoothing of T𝐺 , we are
able to get a new smoothed garment template topology T𝐺

𝑓 𝑖𝑡𝑡𝑖𝑛𝑔
.

Let 𝑓 (x, 𝑡) : G ↦→ R be a function on the garment surface, then it
is smoothed with the diffusion equation:

𝜕𝑓 (x, 𝑡)
𝜕𝑡

= _Δ𝑓 (x, 𝑡), (2)

which means that the function changes over time by a scalar dif-
fusion coefficient _ times its spatial Laplacian Δ𝑓 . We apply this
Laplacian smoothing method to the vertex coordinates t𝑖 ∈ T𝐺 :

t𝑖 = t𝑖 + _Δt𝑖 , (3)

where Δt𝑖 denotes the discrete Laplace-Beltrami operator applied
at vertex t𝑖 , and _ and the number of iterations controls the level
of smoothing. A lower value of _ yields a smoother surface and
fewer structural details. We use _ = 0.15 and 80 iterations to obtain
a smoothed garment topology T𝐺

𝑓 𝑖𝑡𝑡𝑖𝑛𝑔
. In total, we could achieve

the labels for two networks in GarMatNet by:

D𝑙𝑜𝑐𝑎𝑙 ( ®𝜔, ®\ ) = T𝐺 ( ®𝜔, ®\ ) − T𝐺
𝑓 𝑖𝑡𝑡𝑖𝑛𝑔

( ®𝜔, ®\ ), (4)

D𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 ( ®𝜔, ®\ ) = D( ®𝜔, ®\ ) − D𝑙𝑜𝑐𝑎𝑙 ( ®𝜔, ®\ ). (5)

3.4 Generally-fitting Network
Generally-fitting Network is used for predicting the displace-

ment between body surface𝑀 ( ®\ ) and smoothed garment template
topology D𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 ( ®𝜔, ®\ ), generated by Laplacian smoothing.

We implement a generally-fitting network with a three-layers
neural network. The input of our network is pose parameter ®\ ∈
R24×3 and material parameter ®𝜔 ∈ R6. The output is the predicted
displacement between human body𝑀 ( ®\ ) and a smoothed garment

Material Parameter Pose Parameter

672

2561024

6421

4281 X 3 = 12843

Input layer

Hidden layer

Output layer

Skinning

Figure 5: Detailed network architecture of generally-fitting
network.

D𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 ( ®𝜔, ®\ ) ∈ R𝑛×3. We use Mean Square Error (MSE) as our
loss function:

Loss𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 =
1
𝑛

𝑛∑
𝑖=1

���D𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 − N𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 ( ®𝜔, ®\ )
���2 , (6)

where N𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 ( ®𝜔, ®\ ) denotes the predicted displacement output by
our generally-fitting network. In total, our loss function represents
the average of the square error of each vertex. Figure 5 shows the
detailed architecture of the generally-fitting network of GarMatNet.



MIG ’21, November 10–12, 2021, Virtual Event, Switzerland Luo, Li, Kanai

Material Parameter Pose Parameter

672

2561024

6421

4281 X 3 = 12843

Input layer

Hidden layer

Output layer

Figure 6: Detailed network architecture of locally-detailed
network.

3.5 Locally-detailed Network
Locally-detailed Network is used for predicting the displace-

ment between a smoothed garment topology T𝐺
𝑓 𝑖𝑡𝑡𝑖𝑛𝑔

( ®𝜔, ®\ ), and
simulated garment topology T𝐺 ( ®𝜔, ®\ ).

As well as the generally-fitting network, we also implement a
locally-detailed network with the same three-layers neural network.
The input is a pose parameter ®\ ∈ R24×3 and a material param-
eter ®𝜔 ∈ R6. The output is the predicted displacement between
a smoothed garment topology and simulated garment topology
D𝑙𝑜𝑐𝑎𝑙 ( ®𝜔, ®\ ) ∈ R𝑛×3. We use Mean Square Error (MSE) as our loss
function:

Loss𝑙𝑜𝑐𝑎𝑙 =
1
𝑛

𝑛∑
𝑖=1

���D𝑙𝑜𝑐𝑎𝑙 − N𝑙𝑜𝑐𝑎𝑙 ( ®𝜔, ®\ )
���2 , (7)

where N𝑙𝑜𝑐𝑎𝑙 ( ®𝜔, ®\ ) denotes the predicted displacement output by
our locally-detailed network, and 𝑛 (= 4281) be the number of ver-
tices of garment mesh. In total, our loss function represents the
average of the square error of each vertex. The detailed architecture
of locally-detailed network of GarMatNet is shown in Figure 6.

Compared to previous works like TailorNet [Patel et al. 2020],
architectures of the above two networks have the following differ-
ences: (1) We split pose parameter and material parameter at the
input layer and the first hidden layer. The benefit of this structure
is that it helps to input two parameters with different units into
one network. (2) We use an early stopping method to decide when
we should stop training instead of setting a fixed number of epochs.
This design prevents over-fitting. (3) We use He Kaiming initializa-
tion [He et al. 2015] to enhance the efficiency of training process.
(4) We normalize our output and change the activation function
from ReLu to tanh.

3.6 Weight controller
We define a variable 𝛼 to control the impact that the material

properties have on the performance. The 𝛼 is a real value between 0
and 1. The higher the 𝛼 is, the more substantial impact it has during
training and vice versa. We here add 𝛼 to the material parameter ®𝜔
at the input layer and 1 − 𝛼 to the pose parameter ®\ at the input
layer. The weight controller could help decide which part plays a
more critical role in the deformation of garment and increase the
accuracy of the prediction model.

3.7 Dataset
We build a dataset with 49446 instances to train and test our

GarMatNet.We have 738 different static poses and 67 different types
of materials which are commonly seen in daily life. The detailed
dataset, or simulated results, are generated by PBS conducted in
Marvelous Designer [CLO Virtual Fashion Inc. 2021]. For pose
variations, we use 738 static SMPL poses, including a wide range of
poses generated from SMPL public sample series. For a given type
of material ®𝜔𝑖 and poses ®\𝑖 , we simulate them in a sequence. To
avoid dynamic effects since we conduct the simulation by a pose
series and it could generate some dynamic effects, we stop each
pose and keep the body static for five frames to let the garment
relax.

4 RESULTS
In this section, we discuss our experiments and obtained re-

sults. We evaluate our method on T-Shirt meshes quantitatively
and qualitatively. Then we compare it to our baseline. Our baseline
is designed based on the architecture of TailorNet [Patel et al. 2020]
by discarding our parameterized material space ®𝜔 .

We perform experiments on Intel(R) Xeon(R) W-2123 @3.60GHz
CPU and NVIDIA GeForce RTX 2080Ti GPU. We evaluate our
method mainly by comparing our results with a baseline and the
ground truth generated by PBS. For training, Pytorch [Paszke et al.
2019] is used for coding and construct the machine learning model.

4.1 Experimental setting
Our baseline and GarMatNet use several MLPs - each of them

has two hidden layers with tanh activation and a dropout layer. We
obtain optimal hyperparameters by tuning our baseline and then
keep them constant to train all other MLPs. We use early stopping,
a form of regularization for preventing overfitting when training
a learner with an iterative method. The value of patience for the
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Method Network Error(mm)
Generally-fitting network 3.10
Locally-detailed network 2.58GarMatNet

Whole pipeline 5.47
Generally-fitting network 5.68
Locally-detailed network 3.09Baseline

(TailorNet) Whole pipeline 8.45

Table 2: Mean per-vertex error of all testing instances.

generally-fitting network is 50 and for the locally-detailed network
is 200 respectively.

For training and testing GarMatNet, we split our dataset into
three subsets: (1) test set: including four different types of materials
selected randomly with 73 poses. All of the data related to these
73 poses are moved to test to make sure that the model would
never meet the information of these target poses. Also, all of the
remaining poses in these four test materials would be moved to test
to ensure that the model never meets any information about the
four test materials. In total, there are four types of unseen materials
with 73 unseen poses. (2) training set: 90% of data except for test.
(3) development set: remaining 10% of data except for test.

For the baseline, since we train a network for a baseline sep-
arately, we select the same four types of materials as our target
materials and use their data in training. For the target material, we
would firstly select 73 poses mentioned above as the test pose, and
we replicate the remaining data 67 times to keep the number of
instances close to the training data used for GarMatNet’s training.
Dataset is used by training, test, and development at the same rate
as the case of GarMatNet

To test the effectiveness of GarMatNet, we select four types of
materials and 73 poses, and our data splitting method is based on
making these poses and materials are unseen. Our four target types
of materials are Sherpa Fleece 160, silk Duchess Satin, Trim fusible
rigid, and cashmere. All of these materials are common in daily
life and have different properties which can also be distinguished
visually. Our target poses are selected from a 738-frame dancing
animation and their frame number is divisible by 10.

4.2 Experimental results
Firstly, we conduct experiments with GarMatNet and baseline

model based on TailorNet [Patel et al. 2020]. We select the mean
distance error of all vertices, including the mean per-vertex error
of all test instances and that of each target pose and material.

The mean distance error of all test samples is shown in Table 2.
We found that our GarMatNet generally outperforms the baseline
in both networks and the whole pipeline. This is that, because of
the application of parameterized material, GarMatNet can study the
difference amongst different poses from data on other materials’.
On the other hand, the baseline model can only learn the pose
information from the data of the material it uses, which means that
the data cannot be leveraged for other garments.

In addition, the mean per-vertex error of each test pose in each
test material is shown in Figure 7 for sherpa fleece and silk, and in
Figure 8. Compared with the baseline method, GarMatNet performs
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Figure 7: Mean per-vertex error of each test pose in each test
material (sherpa fleece and silk).
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Figure 8: Mean per-vertex error of each test pose in each test
material (trim and cashmere).

better in most cases. Also, we found that when the value of mean
per-vertex error is not the same at every pose, especially a pose at
the 300th frame, there is a peak in error. We consider that the data
distribution is not balanced, and the degree of pose change around
the 300th frame is more significant than the other poses, and it is
the reason for the unequal error.

We also visually compare the results of GarMatNet and the base-
line model. Since our task is to learn the differences between differ-
ent types of materials and generate suitable wrinkles on the posed
human body, it is necessary to evaluate whether our model can
retain detailed information about wrinkles depending on the type
of material.

We firstly illustrate the rendered images of ground truth data,
predictions by GarMatNet, and predictions by baseline model. And
then, we show the error between ground truth and predicted results
by heat map to visualize the error information. Moreover, we also
use SSIM (Structural Similarity) [Wang et al. 2004] to evaluate
the similarity between the ground truth and the predicted result
quantitatively.
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Figure 9: Rendered results of Pose A.

We select pose A, B corresponding to 600th and 730th frame
and evaluate their rendered results. The results of poses A and
B are shown in Figure 9 and Figure 10 respectively. Apart from
the rendered results and SSIM we mentioned before, we also add
the black-white local enlargement of wrinkle details to provide a
clearer description of the texture of the wrinkles. Also, we show
the value of each dimension in our parameterized material at the
bottom of each figure.

We can observe that by SSIM, our GarMatNet method outper-
forms the baseline method in most cases. Although for silk in pose
A, GarMatNet performs slightly poorer than baseline. However,
GarMatNet’s results are better than baseline in most cases. The
high value of SSIM proves that GarMatNet is able to retain fine
details and generate a mesh with suitable topology in most cases.
For silk and cashmere cases, we observe that the performance is
poorer than the other two materials. Also, in pose B, the SSIM
of GarMatNet seems lower than the other pose. We consider the
reasons for these problems to be the imbalance of our dataset.

From the black-white local enlargements of wrinkles’ detail,
we observe that apparently, the textures of wrinkles are different
depending on the types of material. In addition, GarMatNet’s black-
white enlargements have roughly the same structure as ground
truth’s in most cases. We realize that in some cases, such as Sherpa
Fleece in Pose B, the baseline’s black-white enlargement is not
able to show the same wrinkle’s pattern as ground truth’s, but
GarMatNet predicts a similar pattern like the ground truth one.
This can also indicate that qualitatively, GarMatNet is doing better
than baseline.

Moreover, by considering the value of each dimension in our
parameterized material model, we can use our intuitive sense of
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Figure 10: Rendered results of Pose B.

vision to evaluate our approach. We can observe that when the
structural springs and flexion springs are weak, like sherpa fleece,
the number of wrinkles is lower than the other materials, and
the characteristics of these wrinkles are soft and large-scale. In
addition, when all the springs are strong, like trim, there will be
more wrinkles, and the garment would look more supportive and
as hard as plastics, but retain the “crisp” characteristic of paper at
the same time.

Lastly, we compare GarMatNet results and baseline results with
the ground truth by heat map to evaluate our method locally. The
results of pose A and pose B are shown in Figure 11 and in Figure
12 respectively. The heat map is leveraged here to evaluate the
performance of GarMatNet at each location on the garment. The
colors stand for the distance error between each pair of vertices.
From the above heat maps, we found that GarMatNet performs
well in these three poses and better than baseline in most cases. It
is easy for the baseline method to generate a significant error at
sleeves, while GarMatNet can suppress large errors at the sleeves.
Also, for pose B, the baseline’s prediction is slightly far from the
ground truth, especially near the neckline. However, GarMatNet
can deal with these cases will and predict the mesh structure with
reality.

4.3 Weight controller
The weight controller is applied at the input layer as 𝛼 . We

conduct experiments by GarMatNet with 𝛼= 0.1, 0.3, 0.5, 0.7 and
0.9. The higher the value of 𝛼 , the higher the weight of material
properties in the network. The results are shown in Table 3. We can
observe that by changing the weight manually, and we can adjust
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Figure 12: Heat map of results of Pose B.

the accuracy of GarMatNet. By our manual experiments, we select
𝛼 = 0.5 as the general setting for all experiments in this paper.

4.4 Training time and performance
The total training time for GarMatNet is about 14 hours, and for

baseline, it is four hours for a network, a total of 16 hours for four
types of materials. The model size of GarMatNet is around 450MB,
while for baseline is 350MB for a network, a total of 1800MB for four
types of materials. The prediction time of GarMatNet and baseline

𝛼
Generally-fitting
network(mm)

Locally-detailed
network(mm)

Whole
pipeline(mm)

0.1 3.10 3.38 6.01
0.3 3.13 2.68 5.56
0.5 3.10 2.58 5.47
0.7 3.98 2.91 6.12
0.9 4.24 2.98 6.45

Table 3: Mean per vertex error of GarMatNet under different
weights.

method is about 20ms/frame. We utilize PBS to generate our dataset,
and the computational time for the PBS method is 325ms/frame by
anNVIDIAGeForce GTX 1060Ti GPU. In total, GarMatNet performs
well in terms of computational costs and meets the requirement for
generating real-time animation with 30fps, while PBS cannot.

Compared to the baseline method, GarMatNet has better gen-
eralization capability in terms of the ability to predict garments’
meshes made for an unlimited number of materials. Moreover, it
also has better performance in terms of training time, error, model
size, and visual performance.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduce GarMatNet, a learning-based ap-

proach for predicting the mesh structure of garments made by
different materials on the different posed human body. Our idea is
to leverage a parameterized material model inspired by the mass-
spring model and construct a suitable MLP-based network for pre-
dicting the subtle difference between different materials. GarMat-
Net consists of two parts: a generally-fitting network for predicting
smoothed garments and a locally-detailed network for generating
detailed wrinkles on a garment. Our experiments show that both
these two networks outperform in terms of mean per-vertex error
and visualization. GarMatNet also has a strong generalization ca-
pacity because of the application of parameterized material. It can
be used for predicting garments made of any material not found in
the training. We also compare our method with a baseline based
on the structure of TailorNet [Patel et al. 2020]. The results show
that we can obtain better results quantitatively and qualitatively
with a shorter training time and smaller model size.

While the GarMatNet method shows impressive generalization
capability, it has several limitations that can be addressed in future
work. First, GarMatNet cannot deal with human bodies with differ-
ent body shapes and garment styles. This work needs a considerable
number of data that exceeds the capability of current mainstream
hardware. Therefore, it is important to develop an appropriate and
efficient way to generate data and construct a suitable network
to train it with a limited number of data. Secondly, more features
can be added to the model, and more accurate results should be
obtainable -with the use of effective features such as a normal map.
Thirdly, some properties related to the material are not considered
in this work, such as the frictional force between garment and skin.
Leveraging a more exquisite model to describe material properties
may help contribute to increasing the reality.
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