
1

High accuracy terrain reconstruction from point
clouds using implicit deformable model

Jules Morel1[0000−0001−7756−0901], Alexandra Bac2[0000−0001−5923−423X], and
Takashi Kanai1[0000−0002−1635−3818]

1 Kanai Laboratory, Graduate School of Arts and Sciences, The University of Tokyo,
Japan

2 Laboratoire d’Informatique et des Systèmes, Aix Marseille University, France

Abstract. Few previous works have studied the modeling of forest
ground surfaces from LiDAR point clouds using implicit functions. [11] is
a pioneer in this area. However, by design this approach proposes over-
smoothed surfaces, in particular in highly occluded areas, limiting its
ability to reconstruct fine-grained terrain surfaces. This paper presents
a method designed to finely approximate ground surfaces by relying on
deep learning to separate vegetation from potential ground points, filling
holes by blending multiple local approximations through the partition of
unity principle, then improving the accuracy of the reconstructed sur-
faces by pushing the surface towards the data points through an iterative
convection model.

Keywords: Implicit surface · Deformable model · Deep learning.

1 Introduction

Digital terrain model (DTM) extraction is an important issue in the field of Li-
DAR remote sensing of Earth surface. Indeed, further data processing procedures
(segmentation, surface reconstruction, digital volume computation) usually rely
on a prior DTM computation to focus on features of interest (buildings, roads or
trees for instance). In the last two decades, many filtering algorithms have been
proposed to solve this problem using Airborne LiDAR sensors (ALS) data.

However, most previous works address DTM extraction for ALS data, which
largely differs from terrestrial LiDAR sensors (TLS) data. Unlike ALS point
clouds, TLS ones provide very dense sampling rates at the ground level, describ-
ing the micro-topography around the sensor. However, the presence of vegetation
and the terrain topography itself generate strong occlusions causing large data
gaps at the ground level, and a risk of integrating objects above the ground
within the DTM. Additionally, the scanning resolution of TLS devices depends,
by nature, on their distance to the sensor, resulting in spatial variations in point
density. Therefore, DTM extraction for TLS data requires dedicated approaches,
in particular for 3D samples acquired in forest environments. [11] is a pioneer-
ing effort designed to reconstruct detailed DTMs from TLS data under forest
canopies using implicit function. The basic idea of this work is (1) to approx-
imate locally the ground surface through adaptive scale refinement based on a



2

quad-tree division of the scene, (2) then to simultaneously filter vegetation and
correct approximations based on the points distribution in each quad-tree cell,
and (3) to blend the local approximations into a global implicit model. In the
present paper, we build upon this previous work and propose several innovations
in order to reconstruct high quality terrain models from laser scan point clouds.

2 Overview of the method

Based on the previous work [11], our method relies on adaptive scale refinement
through a quad-tree division of the scene, local approximations in the quad-tree
cells, and estimation of a global model through the blending of local approxi-
mations, to compute the first approximation of the ground surface. The method
presented in this paper offers several improvements of the previous work to en-
hance the accuracy of the reconstructed terrain model: First, we relegate the
filtering out of vegetation points to a deep network based on PointNet++ [15].
Second, we attribute weights to the data points according to their local den-
sity in order to obtain a more robust local approximation. Third, we refine the
blending of local approximations to make it compliant with the partition of unity
concept with compactly supported radial basis functions (CSRBF). Finally, we
introduce an original deformable model, based on a convection model under a
moving least squares field and a proper functional basis. We thus push the im-
plicit ground surface towards data points to obtain centimeter accuracy. The
complete sequence of computational steps is shown in Figure 1.

Input TLS point cloud Segmentation
vegetation/ground points

Quadtree division and local
approximations

First ground model from
partition of unity

Refined ground model after
convection process

Fig. 1. Overview of method. The segmented ground points are colored according to
their weights coming from the local density.

3 Filtering of vegetation

3.1 Selection of ground points using deep learning

In the estimation of ground surface from LiDAR point clouds, it is common
to first project the point cloud into a fine regular 2D (x,y) grid, of resolution
resMIN , and further select the points of minimum elevation in each cell. The
resulting point cloud is denoted Pmin. In order to ease the segmentation, we
enriched each point of Pmin by geometric descriptors encoding the local linearity



3

and planarity. In practice, we consider for each points its Cartesian coordinates
plus the averaged eigenvalues of the local covariance matrix of the 3D distribution
of the KPCA neighbors, KPCA being defined by the user. In order to feed these
enriched point clouds into a convolutional architecture, we define a partition of
space allowing splitting of an unordered 3D point cloud into overlapping fixed
size regions, each of them encoding the 3D local points distribution. In practice,
we divide the point cloud Pmin into a regular 2D (x,y) grid, then distribute
collocation points to the centroid of every occupied voxel. Then, we form each
batch Bi by considering the 1024 nearest neighbors of each collocation point in
the (x,y) plane. These batches are designed to feed and train a deep learning
model; this model eventually predicts a label for each point of each batch. As
batches largely overlap, each input point belongs to several batches and thus
receive multiple predictions, one for every batch it belongs to. In the last step,
we define a voting process to extract a final segmentation from the multiple votes
per point. The resulting set of points denoted by P = {pi}i=1...N ⊂ R

3 serves
as raw data for the proposed algorithm.

3.2 Weighting of points according to the local density

A common practice in surface reconstruction from in-homogeneous point clouds
consists of applying a weight to each point according to the local density around
pi. In order to take into account density irregularities due to overlapping scans
and the confidence measures attributed to the points, the proposed method by
[12] scales down the point influence in high density areas. We were inspired by
this idea but implement the opposite scaling: in forest 3D scans, while consid-
ering terrain modeling, clusters of points tend to describe accurately ground
topology whereas isolated points appear less reliable and their influence needs
to be reduced. To do so, we assigned a weight di at each point pi given by

di = 1− 1

maxd

∑

pj∈PK
j

∥pi − pj∥ (1)

where PK
j is the K-neighborhood of point pi (from our experiments K = 20

appears as a good choice), maxd is defined as:

maxd = max




∑

pj∈PK
j

∥pi − pj∥, ∀ pi ∈ P


 (2)

4 First surface estimation by blending local quadrics
approximations

4.1 Quadtree division of the plane

Initially, the minimum bounding rectangle of filtered minimum points is inserted
as the root of the quadtree. Then, we iteratively subdivide each cell into four



4

leaves. The process stops when a leaf presents a side smaller than Sizemin, the
minimal size allowed defined by the user, or when ncell the number of points
in the cell becomes inferior to the number of parameters of the local quadric
patches (i.e. ncell < 6) described in the following Section 4.2.

4.2 Local approximations

Taking into account a quadtree that divides the data points, for each of its leaves
Oi, we denote by ci the center of Oi.

In each cell Oi, an approximate tangent plane is computed using least square
fitting. Let (u, v, w) denote a local orthonormal coordinate system such that
the direction zl is orthogonal to the fitting plane. We approximate Oi by a
local implicit quadric function gi(u, v, w) = w − hi(u, v) where, in the local
coordinate system, hi is a quadratic parametric surface of the following form:
h(u, v) = A·u2+B ·u·v+C ·v2+D ·u+E ·v+F . In each leaf Oi, considering pj =
(uj , vj , wj) ∈ P, coefficients A,B,C,D,E, F are determined by the weighted
least square minimization of:

∑

pj∈P

di · (wj − h(uj , vj))
2 · Φσi(∥pj − ci∥) (3)

where di is the weight defined in Section 3.2 and Φσi(∥x− ci∥) = φ(∥x−ci∥
σi )

and φ(r) = (1− r)4+(1+4r) is a compactly supported Wendland’s RBF function
[17]. The function φ is C 2 and radial on R

3. The parameter σi controls the
influence of the local approximation of the leaf Oi. In our case, in order to
always cover the bounding box of the points contained in the leaf Oi by a ball
of radius σi, we chose σi = ai ×

√
3 × 0.75, where ai is the longest side of the

leaf Oi.

4.3 Global approximation by blending local approximations

After estimating the local approximations of the data points for each leafs Oi, the
global implicit model by blending together local patches by means of Wendland’s
CSRBF. The global implicit model f is computed as:

f(x) =
∑

ci∈C

gi(x) ·
Φσi(∥x − ci∥)∑

cj∈C

Φσj (∥x − cj∥)
(4)

where gi(x) is the local approximation in the leaf Oi defined in the previous
Section.

More precisely we use compactly supported Wendland’s RBF functions [17] as
a partition of unity to merge the local implicit functions (issued from parametric
patches) and compute a global implicit model.



5

5 Improvement of surface model with a convection model

Because occlusion phenomenon forces large quadtree cells, and thus coarser local
approximations, the first surface estimation described in Section 4 can be further
improved by being pushed closer to the data point. Inspired by the level-sets for-
mulations [16, 13] in the field of image processing, our method builds particularly
on the work of Gelas [7] and describes the evolution of the surface driven by a
time-dependent partial differential equation (PDE) where the so-called veloc-
ity term reflects the 3D point cloud features. The level-set PDE is then solved
through a collocation method using CSRBF.

5.1 From blended quadrics model to CSRBF model

In order to both express the refined implicit surface and discretize the numerical
problem, we create a new base of functions. This basis is built according to the
following process: collocation centers are regularly distributed on a 3D grid, of
user-defined resolution r, around the zero-levelset of the implicit function 4. In
order to limit the number of collocations while allowing the surface to move
in the vicinity of data points but , we decimate the clouds of collocation by
removing each center further than 2 × r from a data point or further than r

from the zero-levelset. Considering Q the set of collocation, the basis of function
is then defined as the set of translates at each remaining collocation o ∈ Q of
Wendland’s CSRBF Φro(∥x − o∥) = φ(∥x−o∥

ro
): where ro = r ×

√
3× 0.75.

First, we approximate the implicit function f defined in Equation 4 in the
new basis Span{Φro} as g(x) =

∑

o∈Q

αo · Φro(∥x − o∥).

To retrieve {αo}o∈Q, we consider the system :
∣∣∣∣∣∣∣∣

. . .
Ao,o′

. . .

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

...
αo
...

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

...
f(o′)

...

∣∣∣∣∣∣∣∣
(5)

where o and o′ are two collocations, Ao,o′ = Φro(∥o′ − o∥) and the implicit
function f describing the blended quadrics model is expressed by Equation 4.
Thanks to the properties of Wendland’s CSRBF Φro , the matrix of the Ao,o′

elements is sparse, self-adjoint and positive definite. Thus, the system is inverted
by using the LDLT Cholesky decomposition implemented by Eigen library.

5.2 Solving convection evolution equation using CSRBF collocation

We define now the velocity vector V (p, t),p ∈ R
3, t ∈ R, a function reflecting

the geometrical properties of the interface according to the data, and quantifying
the local deformations over time. The velocity is actually computed at each
collocation o ∈ O by minimization of an energy function inspired by the snake
approaches introduced by Kass[9]. Indeed, we define the energy function ∀q ∈



6

R
3, ξ(q) = γ · ξdata(q) + (1− γ) · ξsurface(q), where ξdata(q) gives rise to sample

points force and ξsurface(q) gives rise to external constraint forces. A weighting
scalar parameter γ, defined by the user, adjusts the influence of both terms.

At each collocation o ∈ O, we consider a local plane of normal n fitting the
data points. For a given point q ∈ R

3, p is its projection on the this plane, and
t the distance between q and the plane; so we have p = q − t × n. Figure 2
summarizes this setup.

q

x' p

t . nn'

g

Fig. 2. The weight on an data point p
i
∈ P , denoted here by different shades of gray,

is a function of the distance from p
i

to q.
Thus, ξdata and ξsurface are expressed at the point q as functions of t and n:

ξdata(t,n) =
∑

pi∈P

⟨pi − q + t× n, n
∥n∥⟩

2 · θ(∥pi − q + t× n∥)

ξsurface(t,n) = ⟨x′ − q + t× n,n′⟩2
(6)

where n′ is the gradient of the implicit function defining the continuous tubular
model, x′ is the projection of p on the zero level-set of this function, and θ is a
compactly supported Wendland’s RBF.

For clarity, ξsurface quantifies the distance between the continuous tubular
model and MLS model[1] locally approximating the data. The gradient of ξ is
then expressed as ∇ξ = γ ·∇ξdata+(1−γ) ·∇ξsurface. Following equations 7 and
8 detail the computation of both data and surface gradient terms, respectively
ξdata and ξsurface.

∇ξdata(t,n) =
∑

pi

2 · ⟨pi − q + t× n, n
∥n∥⟩ · ∇G (t,n) · θ(∥pi − q + t× n∥)

+ ⟨pi − q + t× n, n
∥n∥⟩

2 · M T
(t,n) · ∇θ(∥pi − q + t× n∥)

(7)

where





∇G (t,n) =




1

∥n∥ · (I3 −
n · nT

∥n∥2 ) · (pi − q) + t · n
∥n∥

∥n∥




M(t,n) =




nx

I3 · t ny

nz




∇θ(∥r∥) = (−20 · ∥r∥) · (1− ∥r∥)3 · r
∥r∥



7

The second gradient term is computed as:

∇ξsurface(t,n) = 2 · M T
(t,n) · ⟨x′ − q + t× n,n′⟩ · n′ (8)

We retrieve (tmin,nmin), minimizing ξ(t,n) with the Fletcher-Reeves[6] conju-
gate gradient algorithm available in the GSL library. The minimizer is initi-
ated at the point q ∈ R

3 to (t0,n0) = (
−−−−→
q − x′ · n′,n′). From this minimization

process computed at each collocation o arises a deformation vector defined as
vo = −tmin × nmin.

To push the surface to the data points according to the deformation vector
field, we propose to follow a convection model as proposed by Osher[13]:

dg(p, t)
dt

= vp ◦ ∇g(p, t) (9)

where vp is the deformation vector expressed at p, and ◦ is the element-wise
product. To solve Equation 9, we assume that space and time are separable. We
decompose g(p, t) = α(t) ·Φ(p) where Φ(p) is made of the basis functions values
evaluated at the point p and α(t) composed of the respective α values. Equation
9 thus becomes the ordinary differential equation of evolution:

dα(t)

dt
·Φ(p) = vp ◦ [α(t) · ∇Φ(p)] (10)

After the application of Euler’s method, Equation 10 becomes:

α(t+ τ) = α(t)− τ ·Φ(p)−1 · H (t,p) (11)

where τ is the time step and H (t,p) = vp ◦ [α(t) ·∇Φ(p)]. The evolution of the
CSRBF coefficients is finally given by Equation 11. From this set of CSRBF, we
compute an implicit function and finally extract its zero level-set to produce the
terrain surface model.

5.3 Re-normalization of implicit function

In order to prevent the apparition of new zero level components far away from the
initial surface, periodically reshaping the implicit function is a common strategy.
In order to bound the function g defined in Section 5.1, hence its gradient ∇g,
we bound the expansion of its coefficients αoc . In practice, inspired by [7], we
bound ∥α(t)∥∞ if ∥α(t)∥∞ > β, where β is a positive constant. The evolution
equation becomes





α(t+ τ) = α̃(t)− τ ·Φ(p)−1 · H (t,p)
α̃(t+ τ) = β

∥α(t+τ)∥∞

·α(t+ τ), if ∥α(t+ τ)∥∞ > β

α̃(t+ τ) = α(t+ τ), otherwise
(12)



8

5.4 Complexity

Using an octree data structure for the collocations layout, as advised by Wend-
land[17], the matrix Φ(p) computation is O(NlogN) and the implicit function
evaluation g is O(logN). According to Botsch[2], the inversion of Φ(p) through
the Cholesky factorization is O(nzf), where nzf is the number of nonzero fac-
tors, which depends on the CSRBF center position and on the CSRBF support
size. The cost of the re-normalization described in Section 5.3 is O(N).

6 Experiment and Validation

In order to train our deep learning model, labeled point clouds of forest plot
mock-ups are required. To generate such data-sets, we simulate 3D point clouds
from artificial 3D terrains and trees models, as described in the following Section
6.1. As the accuracy of the terrain surface reconstructed by our method depends
first on the efficiency of our deep network segmentation, we first measured its
ability to segment vegetation points from ground points on local minima of
simulated scenes. Section 6.3 describes the quantitative and qualitative results
of terrain reconstruction on simulated and real TLS scans. Moreover, we evaluate
the improvement brought by the deformable model.

6.1 Training data generation

Fig. 3. Models of forest 32m× 32m plot: left side, mesh model; center and right side,
side and top view of a simulated point cloud.

To build a training data-set whose point clouds resemble the real TLS for-
est scans, described later in Section refsec:datareal, we designed realistic tree
mesh models of pines, spruces and birches using SpeedTree [8]. This software
is providing nowadays high quality 3D renderings for the gaming and film in-
dustries as well as architectural visualization projects. Ground surfaces meshes
were produced using hybrid multi-fractal terrain method [5] implemented within
Meshlab [3]. Then, we associated ground and trees models to build 3D models
of complete forest plots, and used a LiDAR simulator based on PBRT [14] to
generate point clouds. In order to simulate the point distribution close to the
ground, which is scattered and complex due to leaves and very small vegetation,
we applied a Gaussian noise (std=10cm) on points originating from ray hitting



9

the ground surface. Figure 3 shows an example of a meshed forest plot mock-up
along with two views of the resulting simulated point clouds. As the goal of our
deep network is to learn how to handle different patterns of trees occlusions, we
artificially increased the training data by repeating the simulation process for
six virtual scan positions evenly distributed on a 4 meter circle centered on the
plot. Each simulated point cloud has around 7 million points

6.2 Real LiDAR scans

The real TLS scans used in the validation are the ones used in the benchmark
[10]. They were acquired in a southern boreal forest of Finland. Each of the
originating plot, of a fixed size of 32m× 32m, was selected from varying forest-
stand conditions representing different developing stages with a range of species,
growth stages, and management activities. The plots were divided into three
categories (two plots per category) based on the complexity of their structure
(from the point-of-view of a TLS survey): easy (plot 1 and 2), medium (plot 3
and 4) and difficult (plot 5 and 6). This data-set comes with a reference ground
model, fully checked by the operator, composed of 3D points laying over a 2D
grid of 20 cm resolution. Each plot was scanned from five positions: one scan at
the plot center and four scans at the four quadrant directions.

6.3 Experiments and Discussions

As pointed out earlier, the performance of our method relies first on its ability
to filter out vegetation points based on the deep learning segmentation. In or-
der to assess this performance, we first compute the mean kappa indicator of
the classification of all the simulated scenes, for different values of resMIN the
resolution of the 2D grid used in the extraction of the minimum points Pmin

and KPCA the number of neighbors used in the local PCA analysis described in
Section 3.1. Through sensitivity analysis, we obtained the best average kappa
(0.977) on the simulated data-set for resMIN = 10cm and KPCA = 128. We use
those parameter values for the rest of the validation. Using a pre-trained model
with these parameters, we analyzed the distance between the input data of our
method and the reconstructed surfaces it produces.

Simulated data In each step of the validation, we checked the robustness of
our method by asserting that the reconstructed surfaces were made of a single
continuous patch without holes covering the full extent of the input data. Then,
we measured its accuracy by computing the distance between the input data and
the surface model. To do so, we defined a distance distribution by computing
the euclidean distance in between each vertices of the resulting surfaces to the
closest vertex of the reference surfaces. The table 1 presents the segmentation
result and the distance distribution for one scan of each artificial forest scan.

For every artificial plot, our model efficiently filters out the vegetation points.
Moreover, the reconstructed surfaces are placed at a mean distance of 2 cm



10

Table 1. Distance between reconstructed terrain surface and reference: (Top) Results
of segmentation of the simulated point cloud. The vegetation points that are filtered out
are represented in green. (Middle) The euclidean distance to the reconstructed surface
represented as a color gradient at each vertex of the reference surface. (Bottom) The
distribution of distances represented as box-plots (without outliers).

Se
gm

en
ta

tio
n

0 m

0.5 m

from the terrain model produced with Meshlab, except in large occlusions where
ground points are missing and where the reconstructed surface is approximated
from the surroundings.

Real data While dealing with real TLS scans, we reconstructed, for each plot,
the terrain surface from the single central scan and also from a point cloud re-
sulting of the fusion of all five available scans per plot. This allows evaluation
of the method performance for various point density in different forest environ-
ments. Having access to the reference terrain model, we computed the distance
in between surfaces, vertex to vertex. In the case of real data, we first extract the
ground points using our deep learning network, then compute the distance be-
tween the vertices of the reconstructed surface and the ground points packaged
with the LiDAR scans. The results are shown in Table 2.

Finally, we analyzed the evolution of terrain model the iteration of deforma-
tion, by measuring its distance distribution to the segmented ground points. The
results are presented in Tables 3 and 4, for single and multiple scans respectively.

As pointed out in the Table 2, the efficiency of our method to reconstruct a
terrain model close to the reference depends on the terrain complexity and on the
nature of the scans: for the simpler forest plots (1 and 2) single scans, our method
produces accurate terrain models that are positioned 6 cm from the reference.
Due to the missing points in the occlusion that expands with complexity, this
distance increases for plots 3, 4, 5, and 6. However, in the case of multiple scans,



11

Table 2. Mean Hausdorff distance (cm) between reconstructed surface from sin-
gle/multiple scan(s) and reference ground model.

Plot 1 2 3 4 5 6

Single - Mean Distance (cm) 6.04 5.82 22.23 26.89 12.85 21.76
Multiple - Mean Distance (cm) 2.58 3.14 5.93 8.27 2.88 7.17

the occlusion phenomenon lessens, which makes available anchor points allowing
sharper terrain surfaces to be produced. In such cases, with our method, the
mean distances are around 3 cm on the simpler plot, and from 3 to 8 cm on a
more complex topology.

In Tables 3 and 4, we analyzed the contribution of the deformation produced
by the convection in the final accuracy of our terrain surfaces. For every plot,
the mean of the distance distribution and its standard deviation decreases for
both single and multiple scans. The stronger drops occurs at the first iteration,
the following ones remaining light in comparison. Except for plot 3 and 4 single
scans, the reconstructed surface sets at 2 cm on average from the segmented
ground points after five iterations of convection.

The single scans of plots 3 and 4 highlight the limitation of our method:
while the mean distance from the segmented ground points remained at 2 to
3 cm, the distance distribution presents extreme values above 20 cm. This is
due to the failure of our deep learning model to correctly filter out vegetation
points. Those two particular plots, while being scans from a single point presents
problematic 3D points patterns, which vanish if scanned from multiple points
of view. The forest mock-ups are crucial; they need to take proper account of
the actual reality. Indeed, they are used to produce simulated data training and
determine the quality of the segmentation, which is the first step of our method
and condition the reconstruction of the overall scene.

7 Conclusion

In this work, we propose an efficient method designed to recover terrain surface
model from 3D sample data acquired in forest environments. Our approach relies
on deep learning to separate ground points from vegetation points. It handles
the occlusion and builds a first approximation of the ground surface by blending
implicit quadrics through the partition of unity principle. Then our method gets
rid of the rigidity of the previous model by projecting it in a CSRBF basis before
deforming it by convection. These contributions enable us to achieve state of the
art performance in terrain reconstruction. In the future, it is worthwhile thinking
of how to design forest mock-ups adapted to train networks able to filter different
forest environments.



12

8 Acknowledgments

The authors would like to thank the reviewers for their thoughtful comments
and efforts towards improving our manuscript and the Japan Society for the
Promotion of Science (JSPS) for providing Jules Morel fellowship.

References
1. Amenta, N., Kil, Y.J.: Defining point-set surfaces. ACM SIGGRAPH 2004 Papers

p. 264–270 (2004)
2. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting

on today’s gpus. In: Proceedings Eurographics - IEEE VGTC Symposium Point-
Based Graphics, 2005. pp. 17–141. IEEE (2005)

3. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.:
Meshlab: an open-source mesh processing tool. In: Eurographics Italian chapter
conference. vol. 2008, pp. 129–136 (2008)

4. Dell’Accio, F., Di Tommaso, F., Gonnelli, D.: Comparison of shepard’s like methods
with different basis functions. In: International Conference on Numerical Compu-
tations: Theory and Algorithms. pp. 47–55. Springer (2019)

5. Ebert, D.S., Musgrave, F.K.: Texturing & modeling: a procedural approach. Mor-
gan Kaufmann (2003)

6. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. The
computer journal 7(2), 149–154 (1964)

7. Gelas, A., Bernard, O., Friboulet, D., Prost, R.: Compactly supported radial basis
functions based collocation method for level-set evolution in image segmentation.
IEEE Transactions on Image Processing 16(7), 1873–1887 (2007)

8. Interactive Data Visualization, Inc. : SpeedTree. IDV, 5446 Sunset Blvd. Suite 201
Lexington, SC 29072 (2017), https://store.speedtree.com

9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional journal of computer vision 1(4), 321–331 (1988)

10. Liang, X., et al.: International benchmarking of terrestrial laser scanning ap-
proaches for forest inventories. ISPRS journal of photogrammetry and remote
sensing 144, 137–179 (2018)

11. Morel, J., Bac, A., Véga, C.: Terrain model reconstruction from terrestrial lidar
data using radial basis functions. IEEE computer graphics and applications 37(5),
72–84 (2017)

12. Ohtake, Y., Belyaev, A., Seidel, H.P.: 3d scattered data approximation with adap-
tive compactly supported radial basis functions. In: Proceedings Shape Modeling
Applications, 2004. pp. 31–39. IEEE (2004)

13. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces, vol. 153.
Springer Science & Business Media (2006)

14. Pharr, M., Jakob, W., Humphreys, G.: Physically based rendering: From theory
to implementation. Morgan Kaufmann (2016)

15. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in neural information processing
systems. pp. 5099–5108 (2017)

16. Tsai, R., Osher, S., et al.: Review article: Level set methods and their applications
in image science. Communications in Mathematical Sciences 1(4), 1–20 (2003)

17. Wendland, H.: Scattered Data Approximation. Cambridge University Press (2005)



13

Table 3. Estimation of forest plots ground surface based on TLS single scans. The two
first columns show the side and top view of the point cloud. For visualization purpose,
the point clouds have been colorized according to the point elevation and the local
point density. The third column present the segmentation of the minimum points. The
last column show the evolution of the distance between the reconstructed terrain model
and the segmented ground points for several iteration of deformation.

Pl
ot

1

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

1

2

3

4

5

6

7

0 1 2 3 4 5

Pl
ot

2

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

2

4

6

8

0 1 2 3 4 5

Pl
ot

3

Iteration

D
is

ta
n
c
e
 (

c
m

)
0

5

10

15

20

25

30

0 1 2 3 4 5

Pl
ot

4

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

5

10

15

20

0 1 2 3 4 5

Pl
ot

5

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

2

4

6

8

10

12

0 1 2 3 4 5

Pl
ot

6

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

5

10

15

20

0 1 2 3 4 5



14

Table 4. Estimation of forest plots ground surface based on TLS multiple scans. The
two first columns show the side and top view of the point cloud. For visualization
purpose, the point clouds have been colorized according to the point elevation and the
local point density. The third column present the segmentation of the minimum points.
The last column show the evolution of the distance between the reconstructed terrain
model and the segmented ground points for several iteration of deformation.

Pl
ot

1

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

1

2

3

4

5

0 1 2 3 4 5

Pl
ot

2

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

2

4

6

8

0 1 2 3 4 5

Pl
ot

3

Iteration

D
is

ta
n
c
e
 (

c
m

)
0

2

4

6

8

0 1 2 3 4 5

Pl
ot

4

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

2

4

6

8

10

0 1 2 3 4 5

Pl
ot

5

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

1

2

3

4

5

6

0 1 2 3 4 5

Pl
ot

6

Iteration

D
is

ta
n
c
e
 (

c
m

)

0

2

4

6

8

10

0 1 2 3 4 5


