
The International Journal of Virtual Reality, 2011, 10(1):25-31 25

Abstract—This paper proposes a practical technique for fast

animation of materials such as viscoelastic fluids. A fast animation

of such materials is desperately desirable especially for real-time

applications such as games. We compute the behavior of

viscoelastic fluids approximately instead of the exact simulation

by combining two well-established approaches, Smoothed-

Particle Hydrodynamics and Shape Matching. This enables fast

and stable computations. A combination is done by a simple linear

interpolation of velocities. A variety of materials between a fluid

and an elastic solid can be represented by changing only a

parameter of linear interpolation. We also propose how to bring

our approximate method closer to the actual motions of

viscoelastic fluids including merging or splitting of objects. We

demonstrate a high-speed performance of our method with

presenting several interesting results.

Index Terms—Computer Animation, Viscoelastic Fluids,

Particle-Based Simulation, Smoothed-Particle Hydrodynamics,

Shape Matching.

I. INTRODUCTION

In this paper we describe a practical technique for fast

animation of materials such as viscoelastic fluids. Viscoelastic

fluids are the materials which have both physical properties of

fluids and elastic solids. By weak forces they keep their original

shape like an elastic solid, and by strong forces they deform and

change their shape like a fluid. There are a huge variety of

materials which represent this type of behavior, e.g., clay,

chewing gum, toothpaste, shaving cream, gelatin, etc.

Animations of these materials have recently been successfully

used in special effects for computer graphics applications.

Especially for games, fast animation of such materials is

desperately desirable.

According to the theory of continuum mechanics [7], the

difference between a perfect fluid and an elastic solid is

whether an elastic force, which an object reinstates itself to its

original shape, is included or not. To simulate the behavior of

viscoelastic fluids in the literature, the general approaches are

to introduce elastic forces into the Navier-Stokes equation.

Manuscript Received on 25 December 2010.

E-mail: kanait@acm.org

Indeed, previous approaches in CG community solve such

extended governing equations by using an Eulerian grid-based

fluid simulation [11] or a particle-based Lagrangian fluid

simulation [10]. These straightforward approaches are,

however, hard to be processed in real-time. As far as we know,

there is no approach to simulate viscoelastic fluids fast enough

to be used in real-time applications.

We propose a fast and stable method to compute the behavior

of viscoelastic fluids approximately instead of the exact

simulation. A key idea here is to combine two well-established

approaches for fast and stable computations of object motions.

For computing fluid motions, a Smoothed-Particle Hydro-

dynamics (SPH) method [14] can be recently used. It is a

particle-based Lagrangian method and then each particle can be

moved freely. On the other hand, Shape Matching (SM)

methods [17, 21] approximately represent motions of elastic

solids in real-time. They are originally designed for solids, i.e.,

the connectivity of elements (particles) does not change during

deformations. However, those methods are by nature

extendable in the case of changing the connectivity of particles.

A combination is done by a simple linear interpolation of

current velocities in order to keep the high-speed performance

and the robustness of an individual method. Consequently, a

variety of materials between a fluid and an elastic solid can be

changed by only a parameter of linear interpolation. We also

discuss how to bring our approximate method closer to the

actual motions of viscoelastic fluids including merging or

splitting of objects.

II. RELATED WORK

2.1 Fluid simulation

Fluid simulation became widely known in computer graphics

by a method of Foster and Metaxas [9]. Their method solves

Navier-Stokes equation, the governing equation of fluids, by

discretizing using an Eulerian grid. Stam [24] simplified an

advective term by using the semi-Lagrangian method to

improve an Eulerian grid-based method with robustly taking a

large time step. On the other hand, Lagrangian particle methods

such as Smoothed-Particle Hydrodynamics (SPH) [14] were

well studied recently. SPH was first introduced in astrophysics

and Müller et al. [15] successfully used in computer graphics at

A Fast and Practical Method for Animating

Particle-Based Viscoelastic Fluids

Kenji Takamatsu and Takashi Kanai

The University of Tokyo, Graduate School of Arts and Sciences

The International Journal of Virtual Reality, 2011, 10(1):25-31 26

interactive rates. Adams et al. [1] used an adaptive sampling

method to improve computational performance. Performances

were further improved by using GPUs [12]. SPH can also be

used for representing other types of materials between fluids

and solids. For example, Solenthaler et al. [23] additionally

introduced a temperature term to represent melting and

solidification of objects.

2.2 Elastic solid animation

Elastic solid animation was introduced by Terzopoulos et al.

[26] using a finite difference method. Several other methods

were also studied such as a mass-spring method [2], a FEM

method [16], a particle-based method [18]. Those methods are,

however, time-consuming due to exact and robust solutions of

elasticity equation. On the other hand, a Shape Matching (SM)

method originally proposed by Müller et al. [17] is a

geometry-based approach and imitates an elastic deformation.

The main advantage is its fast and unconditionally stable

computation; there is no need to solve the equation of motion.

Later, its computational performance was further improved by

using an adaptive sampling [25] or by using a lattice shape [21].

As an example to imitate physical motions, Rungjiratananon et

al. [22] recently extended SM to simulate human's hairstyles.

Becker et al.[4] used both SPH and SM to represent elastic

motions. This is most relevant research to ours in the sense that

SPH and SM can be efficiently combined. The main difference

is that they integrate the computation of rotation matrices in SM

into SPH, while our method simply interpolate velocities so as

to keep the high-speed performance and the robustness of an

individual method.

2.3 Viscoelastic Fluids / Viscoplastic solids simulation

Goktekin et al. [11] realized a viscoelastic fluid simulation

by taking into account an elastic term to an Eulerian grid-based

fluid simulation [8]. Bargteil et al. [3] achieved a robust

viscoplastic solid simulation by using a FEM method and

remeshing. Several methods based on SPH were also studied

for considering elasticity, plasticity, and viscosity. Clavet et al.

[6] added springs between pairs of neighboring particles in SPH.

Paiva et al. [19] modified the traditional N-S equation and

employed generalized Newtonian liquid model to simulate

viscoplastic fluids. Solenthaler et al. [23] introduced a unified

particle model for the simulation of liquids and deformable

solids as well as rigid objects. This is the most relevant research

to ours. Chang et al. [5] introduced more general elastic stress

term to the N-S equation and changed the viscosity and elastic

stress coefficients according to the temperature variation.

Gerszewski et al. [10] applied arbitrary constitutive models to

compute elastic forces in viscoplastic solids by using

deformation gradients. All these methods are, however, hard to

be used in real-time applications. This is mainly because each

time step has to be set to an extremely small value to robustly

handle numerical simulations.

III. ANIMATION FRAMEWORK

In this section, we describe our animation framework to

compute the behavior of viscoelastic fluids. As described in

Section 1, a key idea is to combine two well-established

approaches for fast and stable computations. It should be noted

that our approach does not solve a combined N-S equation with

an additional elastic term like as most of previously-published

approaches. In our approach two fast and stable approaches,

SPH for fluid simulation and SM for elastic solid deformation,

are processed independently in each simulation step and two

velocities are linearly interpolated. A new position is then

computed by integrating an interpolated velocity. Note that we

do not consider the plastic deformations, since we use SM to

represent elastic motions approximately.

3.1 Combination of SPH and SM

We briefly introduce two approaches, SPH and SM, at first.

We then describe how to combine these two approaches.

SPH formulations. SPH is an interpolation method with each

particle carrying field quantities. A force for each particle

 is computed based on the physical properties

of neighboring particle weighted by kernel functions.

According to the N-S equation, forces for each particle are the

pressure force

, the viscosity force
 , and the

external force
 including gravity force and collision

response forces as follows:

 (1)

 (2)

where , , are mass, density,

and velocity vector respectively. Also, , , ,

 denote pressure, initial density, pressure coefficient, and

viscosity coefficient respectively. Note that neighboring

particles have to be updated for each simulation step. A

kernel function is defined as follows:

 (3)

Based on three forces described above, an acceleration

vector
 is calculated as follows:

 (4)

A position and a velocity vector are updated from such an

acceleration vector by using the standard Euler method as

follows:

 (5)

The International Journal of Virtual Reality, 2011, 10(1):25-31 27

 (6)

SM formulations. SM imitates an elastic solid deformation.

Figure 1 illustrates the original SM scheme. The reference

shape is rigidly transformed to its goal position by using

a rotation matrix and a transformation vector . We compute

 as a barycenter position, and by the polar decomposition of

a linear transformation matrix from to . A position of

each particle is then pulled towards its goal position .

Fig. 1. Computation of and in SM.

Here we slightly extend a method proposed by Rivers and

James [21] to fit our animation framework. The original

scheme utilizes a lattice structure to improve computational

performance. In contrast, our extension adapts the case that

neighboring particles are arbitrary located.

For a particle , neighboring particles

within a support sphere of radius are collected. A goal

position is then defined as the average of rigidly transformed

positions from neighboring particles,

 (7)

where and are a rotation matrix and a transformation

vector of rigid motion in each neighbor particle .

Fig. 2. Comparison to the motions in SM with different settings of . The

length of the bar is 40.0. From left to right: , , .

Fig. 2 demonstrates the results for different support radii .

A larger support size makes an object stiffer due to the effect of

more particles. The computation time also increases much more

for a larger support size.

A position and a velocity vector are updated from a goal

position as follows:

 (8)

 (9)

Combination by the interpolation of velocities. In our

combination method, velocities of both SPH and SM are firstly

updated independently by Equation (5) and (8). Such two

velocities are linearly interpolated by using only a parameter

 . A new position is then computed by using an

Euler integration scheme as follows:

 (10)

 (11)

In addition to the interpolation of velocities described above,

the use of acceleration vectors or positions can be considered

for the combination. However, there is a possibility that it is

computationally unstable due to the division by a small .
Our method can represent various types of materials with

different physical properties by changing a parameter . Figure

3 compares the shapes of cubes with different when they are

fallen on the floor. As shown in this figure, a cube deforms like

an elastic solid with , and a cube flows like a fluid with

 . Also, a viscoelastic behavior can be presented when
is set to an intermediate value between 0 and 1. An elastic

property is greatly appeared as like a jelly with , and a

fluid property is stronger as like a toothpaste with in

Figure 3.

Adjusting the movement of particles. In SPH, a time interval

 is dynamically changed to keep the simulation stable.

 is controlled so as not to move larger than a support

radius of a particle in each simulation step, i.e., is set in

order to satisfy the following inequation;

 (12)

where
 denotes a maximum value of the

magnitude of velocities for all particles. If a velocity is large, a

time interval is set to a small value and then the movement

distance of a particle in each step becomes small.

On the other hand, has little effect on the movement of

particles in SM. In Equation (8) a velocity becomes large for a

small . However, in Equation (9) a position is updated by

adding a velocity multiplied with , then the effect of

gets balanced out. Consequently, the effect of a fluid over the

elasticity is relatively changed with different settings of .

To resolve this issue, the movements of particles in SM are

adjusted by a time interval . That is, Equation (8), a

formula for computing the velocity, is re-written as follows:

 (13)

The second term on the right of Equation (8) is scaled to

follow the dynamic change of over its initial value

 . Therefore, a position and a velocity in SM are

automatically controlled in a balanced manner. The adjustment

of a time interval occurs when the density of particles becomes

high, e.g. a collision against other objects. In this case,

velocities of particles become large due to the high pressure

forces. In our experiments, we set
 and a

50 percents smaller in maximum than
 is observed

during the simulation.

The International Journal of Virtual Reality, 2011, 10(1):25-31 28

3.2 Splitting and Merging

Splitting or merging frequently occurs in the viscoelastic

materials. A viscoelastic object in general is split into two small

objects when external forces stronger than internal elastic

forces are applied to a part of its body. Two objects are merged

when external forces of objects collided with each other exceed

over their internal forces.

Since in SPH each particle moves freely and the arrangement

of particles is not fixed, splitting and merging naturally occur.

However, in the original SM, a reference shape is used to keep

its original shape as an elastic solid. The arrangement of

particles in such a reference shape is fixed during the

simulation. Therefore, splitting or merging never occurs due to

the fixed reference shape. We apply here the following two

extensions to establish splitting and merging with SM.

Update reference shape based on material properties. We

update a reference shape during the simulation in contrast to the

original SM. When a reference shape is updated, neighboring

particles in each particle are possibly changed. Splitting or

merging can occur according to the relationship between

neighbor particles. Note that the computational cost of such

update is subtle since the neighboring particles are already

constructed in SPH and can be reused.

Several factors are considered to check whether the reference

shape is updated or not. Firstly, the change of the object shape

is one of key factors. Here we consider external forces adding

to an object. This is because that a topological change of a

viscoelastic fluid is thought to be caused by suffering external

forces. We then check whether a reference shape is updated or

not by the magnitude of external forces. Let be an

average of the magnitude of external forces for all particles. A

reference shape is updated if , where denotes a

threshold. It should be noted that is an important parameter

to check the update of the reference shape, e.g., setting a larger

 tends to be harder to update the reference shape.

Another key factor to check the update of the reference shape

is the physical property of an object. In the case of the elastic

solid, a reference shape does not want to be updated despite

huge external forces. Also, a reference shape wants to be

updated for each step in case of a fluid. To satisfy both demands,

we relate a parameter to . For a small an object is close to

an elastic solid, and then should be set to a large value. On

the contrary, it is desirable for a fluid to set to a small value

for a large .

We then define a monotonically decreasing function as

shown in Figure 4 to compute according to as follows:

 (14)

where denotes a value of for . This function is

especially useful in the animation which is varied

continuously.

Fig. 4. A function to compute according to .

Setting the number of simulation steps for updating
reference shape. If the update of the reference shape is applied

in every simulation step, the reference shape is deformed like a

fluid. A viscoelastic motion cannot then be realized. So, it is

better to have a certain interval to check the update. Here we

introduce a parameter
and check the update if the number

of simulation steps reaches . We empirically set 2-3

times larger than fps in our simulator to work our check well at

reasonable computation time.

3.3 Algorithm

We now describe our whole algorithm below. denotes the

number of simulation steps to be used for checking the update

of the reference shape.

 ;

loop

 if then

 if then

 ; {Update of the ref. shape}

 end if

 end if

 Adjust ; {Eq. (12)}

 α=0.0 α=0.3 α=0.7 α=1.0

t=0 t=0.8

Fig. 3. Comparison of the shapes of fallen cubes with various setting of α.

The International Journal of Virtual Reality, 2011, 10(1):25-31 29

 Compute ; {Eq. (5)}

 Compute ; {Eq. (8)}

 Compute , ; {Eq. (10), (11)}

 (Option) Rendering by ;
 ;
 ;
 ;

end loop

3.4 Rendering

Just after positions are updated, we render the surface of the

current particles. Although a lot of methods for the rendering of

SPH particles have been recently proposed, we adopt a simple

method. We first create an implicit distance field on a regular

grid covering particles, and then extract an iso-surface by using

Marching Cubes algorithm [13].

(a) “Moai”, 0.0, 0.0 (left), 18.6 (middle), 34.8 (right).

(b) “Armadillo”, 0.8, 0.0 (left), 12.0 (middle), 35.6 (right).

(c) “Bunny”, 0.85, 0.0 (left), 15.2 (middle), 38.1 (right).

(d) “Four balls in a pool”, 0.9, 0.0 (left), 26.5 (middle), 43.25 (right).

Fig. 5. Experimental results of our method with different settings of .

The International Journal of Virtual Reality, 2011, 10(1):25-31 30

To achieve fast rendering, we first extract a part of particles

which are on the surface, and a distance field is then created

from those particles. In SPH, a particle on the surface tends to

have less neighboring particles than an inner particle, and then

its density is lower. Therefore we consider as a particle on the

surface if its density is less than a threshold .

IV. RESULTS AND DISCUSSION

We discuss our results in this section. All our experiments were

performed using a notebook PC with Intel Core 2 Duo P8700

2.53GHz CPU and nVIDIA GeForce GT 130M GPU. Table 1

presents the statistical results of our experiments.

Our input is a set of 3D solid points. To create uniformly-

sampled points from polygonal meshes, we used 3D Delaunay

triangulations in CGAL [20]. Note that we used only vertices of

the output tetrahedra as our input. Resulting images are created

by using Sunflow [27], an open source global illumination

renderer.

Fig. 5(a) shows the “Moai” model (3,764 points) with setting

 . As can be seen from this figure, its motions are like an

elastic solid and keep its original shape even after being

bounced on the floor. It is to be noted that a support size is set to

a large value to establish stiffer motions, and the average

number of neighboring particles therefore becomes large. Also,

a SM in our method is obviously slower than the original

method in [21], because we adapt our method to the case that

neighboring particles are arbitrary located.

Fig. 5(b) shows the “Armadillo” model (4,157 points) with

setting . Its motions are like an elastic solid but a fluid

property is also included. As shown in this figure, an object is

collided and is spread on the floor; however, its shape is not

perfectly collapsed.

Fig. 5(c) shows the “Bunny” model (4,185 points) with

setting . Its motions are like a fluid with some

elasticity. This experiment presents an example of splitting and

merging; we can see that an object is once collided with a

hemisphere and is split into several parts. They are finally

merged on the floor.

Fig. 5(d) shows four balls dropped in the pool with setting

 . Its motions are also like a fluid with a little bit

elasticity. It can be seen that a ball is dropped and is merged

into the pool water.

Concerning about the computational performance of our

method, most time-consuming part is caused by computing

positions in SM, especially when the number of neighboring

particles is large. Our method is still competitive because it

keeps more than 5 times faster compared to other recently

proposed methods for viscoelastic motions [19, 5, 10]. The

method by Paiva et al. [19] is the fastest among three

approaches. The computation of “Pressing Cube” composed of

approximately 6K particles is at 1.81 FPS on a Centrino

1.86GHz CPU as shown in [19]. In contrast our method

establishes 14 FPS by a similar experiment.

V. CONCLUSION AND FUTURE WORK

We have proposed a practical technique for fast animation of

viscoelastic fluids based on combining a fluid simulation by

SPH and an elastic deformation by SM. Setting a parameter

realizes various types of materials between a fluid and an

elastic solid. Splitting and merging can be also presented by

controlling the update of the reference shape in SM. Our

method achieves high computational performance with the ease

of changing various types of materials.

In future work, we would like to implement our method on

GPUs or multi-core CPUs. We think that it dramatically

improves the computational performance even on a stand-alone

PC. Another future work is that we would like to extend our

simulator to deal with several different settings of materials at a

time.

REFERENCES

[1] B. Adams, M. Pauly, R. Keiser and L. J. Guibas. Adaptively Sampled
Particle Fluids. ACM Transaction on Graphics, 26(3), pp.48:1-48:7,

2007.

[2] D. Baraff and A. Witkin. Large Steps in Cloth Simulation. Proc. ACM
SIGGRAPH '98, pp.43-54, 1998.

TABLE 1: STATISTICAL RESULTS OF OUR EXPERIMENTS.
 : THE NUMBER OF PARTICLES. : THE AVERAGE NUMBER OF

NEIGHBORING PARTICLES. V-SIZE: THE SIZE OF VOXELIZATION FOR SURFACE EXTRACTION. FPS (1): FPS WITHOUT SURFACE

EXTRACTION AND RENDERING. FPS (2): FPS WITH SURFACE EXTRACTION AND RENDERING.

Fig. 2

Bar

Fig. 3

Cube

Fig. 5(a)

Moai

Fig. 5(b)

Armadillo

Fig. 5(c)

Bunny

Fig. 5(d)

Balls

 3,600 3,600 3,600 10,648 3,375 3,764 2,015 4,157 2,680 4,185 1,328 8,264

 755.3 256.5 64.3 80.7 23.6 85.3 43.1 27.1 16.6 35.1 26.7 28.3

 0.0 0.0 0.0 0.7 0.7 0.0 0.0 0.8 0.8 0.85 0.85 0.9

 8.0 8.0 8.0 12.0 12.0 6.0 6.0 6.0 6.0 6.0 6.0 10.0

V-size

x

y

z

96 96 96 128 128 160 64 160 64 160 32 160

96 96 96 128 128 160 64 160 64 160 32 160

128 128 128 128 128 192 96 192 96 192 48 224

FPS (1) 1.8 4.7 14.2 4.1 25.1 8.7 26.6 21.9 42.2 17.4 64.6 11.3

FPS (2) 1.3 2.4 3.8 0.35 1.2 0.56 5.4 0.68 6.3 0.42 36.8 0.20

The International Journal of Virtual Reality, 2011, 10(1):25-31 31

[3] A. W. Bargteil, C. Wojtan, J. K. Hodgins and G. Turk. A Finite Element

Method for Animating Large Viscoplastic Flow. ACM Transaction on
Graphics, 26(3), pp.16:1-16:8, 2007.

[4] M. Becker and M. Ihmsen and M. Teschner. Corotated SPH for

deformable solids. Proc. Eurographics Workshop on Natural
Phenomena, pp. 27-34, 2009.

[5] Y. Chang, K. Bao, Y. Liu, J. Zhu and E. Wu. A Particle-Based Method

for Viscoelastic Fluids Animation. Proc. 16th ACM Symposium on
Virtual Reality Software and Technology, pp. 111-117, 2009.

[6] S. Clavet, P. Beaudoin and P. Poulin. Particle-based Viscoelastic Fluid

Simulation. Proc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 219-228, 2005.

[7] E. H. Dill. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity.

CRC Press, 2006.
[8] D. Enright, S. Marschner and R. Fedkiw. Animation and Rendering of

Complex Water Surfaces. ACM Transaction on Graphics, 21(3), pp.

736-744, 2002.
[9] N. Foster and D. Metaxas. Controlling Fluid Animation. Proc. Computer

Graphics International, pp. 178-188, 1997.

[10] D. Gerszewski, H. Bhattacharya and A. W. Bargteil. A Point-Based
Method for Animating Elastoplastic Solids. Proc. ACM SIGGRAPH/

Eurographics Symposium on Computer Animation, pp. 133-138, 2009.

[11] T. G. Goktekin, A. W. Bargteil and J. F. O'Brien. A Method for
Animating Viscoelastic Fluids. ACM Transaction on Graphics, 23(3), pp.

463-468, 2004.

[12] P. Goswami, P. Schlegel, B. Solenthaler and R. Pajarola. Interactive SPH
Simulation and Rendering on the GPU. Proc. ACM SIGGRAPH/

Eurographics Symposium on Computer Animation, pp. 55-64, 2010.
[13] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. Proc. ACM SIGGRAPH '87, pp.

163-169, 1987.
[14] J. J. Monaghan. Smoothed Particle Hydrodynamics. Reports on

Progress in Physics, 68(8), pp. 1703-1759, 2005.

[15] M. Müller, D. Charypar and M. Gross. Particle-Based Fluid Simulation
for Interactive Applications. Proc. ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pp. 154-159, 2003.

[16] M. Müller, J. Dorsey, L. McMillan, R. Jagnow and B. Cutler. Stable
Real-Time Deformations. Proc. ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pp. 49-54, 2002.

[17] M. Müller, B. Heidelberger, M. Teschner and M. Gross. Meshless
Deformations Based on Shape Matching. ACM Transaction on Graphics,

24(3), pp.471-478, 2005.

[18] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross and M. Alexa. Point
Based Animation of Elastic, Plastic and Melting Objects. Proc. ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pp.

141-151, 2004.
[19] A. Paiva, F. Petronetto, T. Lewiner and G. Tavares. Particle-Based

Viscoplastic Fluid/Solid Simulation. Computer-Aided Design, 41(4), pp.

306-314, 2009.
[20] S. Pion and M. Teillaud. 3D Triangulations. CGAL User and Reference

Manual. CGAL Editorial Board, 3.7 edition, 2010.

[21] A. R. Rivers and D. L. James. FastLSM: Fast Lattice Shape Matching for
Robust Real-Time Deformation. ACM Transaction on Graphics, 26(3),

pp.82:1-82:6, 2007.

[22] W. Rungjiratananon, Y. Kanamori and T. Nishita. Chain Shape Matching
for Simulating Complex Hairstyles. Computer Graphics Forum, 29(8),

pp. 2438-2446, 2010.

[23] B. Solenthaler, J. Schläfli and R. Pajarola. A Unified Particle Model for
Fluid-Solid Interactions. Computer Animation and Virtual Worlds, 18(1),

pp.69-82, 2007.

[24] J. Stam. Stable Fluids. Proc. ACM SIGGRAPH '99, pp. 121-128, 1999.
[25] D. Steinemann, M. A. Otaduy and M. Gross. Fast Adaptive Shape

Matching Deformations. Proc. ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pp. 87-94, 2008.
[26] D. Terzopoulos, J. Platt, A. Barr and K. Fleischer. Elastically Deformable

Models. Proc. ACM SIGGRAPH '87, pp. 205-214, 1987.

[27] SunFlow: The Open Source Render Engine.

 http://sunflow.sourceforge.net/.

Kenji Takamatsu is a master course student in the

Graduate School of Arts and Sciences, the University of

Tokyo, Japan. His research interests include

physics-based modeling for CG animations.

Takashi Kanai is an associate professor in the Graduate
School of Arts and Sciences, the University of Tokyo,

Japan. His research interests include geometric modeling

and its application to computer graphics. He received his
doctor degree of engineering from the University of

Tokyo in 1998. He is a member of ACM, IEEE CS, JSPE

(Japan Society for Precision Engineering), IPSJ
(Information Processing Society of Japan).

