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Abstract—This paper proposes a practical technique for fast 

animation of materials such as viscoelastic fluids. A fast animation 

of such materials is desperately desirable especially for real-time 

applications such as games. We compute the behavior of 

viscoelastic fluids approximately instead of the exact simulation 

by combining two well-established approaches, Smoothed- 

Particle Hydrodynamics and Shape Matching. This enables fast 

and stable computations. A combination is done by a simple linear 

interpolation of velocities. A variety of materials between a fluid 

and an elastic solid can be represented by changing only a 

parameter of linear interpolation. We also propose how to bring 

our approximate method closer to the actual motions of 

viscoelastic fluids including merging or splitting of objects. We 

demonstrate a high-speed performance of our method with 

presenting several interesting results. 

 
Index Terms—Computer Animation, Viscoelastic Fluids, 

Particle-Based Simulation, Smoothed-Particle Hydrodynamics, 

Shape Matching. 

 

I. INTRODUCTION 

In this paper we describe a practical technique for fast 

animation of materials such as  viscoelastic fluids. Viscoelastic 

fluids are the materials which have both physical properties of 

fluids and elastic solids. By weak forces they keep their original 

shape like an elastic solid, and by strong forces they deform and 

change their shape like a fluid. There are a huge variety of 

materials which represent this type of behavior, e.g., clay, 

chewing gum, toothpaste, shaving cream, gelatin, etc. 

Animations of these materials have recently been successfully 

used in special effects for computer graphics applications. 

Especially for games, fast animation of such materials is 

desperately desirable. 

According to the theory of continuum mechanics [7], the 

difference between a perfect fluid and an elastic solid is 

whether an elastic force, which an object reinstates itself to its 

original shape, is included or not. To simulate the behavior of 

viscoelastic fluids in the literature, the general approaches are 

to introduce elastic forces into the Navier-Stokes equation.  
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Indeed, previous approaches in CG community solve such 

extended governing equations by using an Eulerian grid-based 

fluid simulation [11] or a particle-based Lagrangian fluid 

simulation [10]. These straightforward approaches are, 

however, hard to be processed in real-time. As far as we know, 

there is no approach to simulate viscoelastic fluids fast enough 

to be used in real-time applications. 

We propose a fast and stable method to compute the behavior 

of viscoelastic fluids approximately instead of the exact 

simulation. A key idea here is to combine two well-established 

approaches for fast and stable computations of object motions. 

For computing fluid motions, a Smoothed-Particle Hydro- 

dynamics (SPH) method [14] can be recently used. It is a 

particle-based Lagrangian method and then each particle can be 

moved freely. On the other hand, Shape Matching (SM) 

methods [17, 21] approximately represent motions of elastic 

solids in real-time. They are originally designed for solids, i.e., 

the connectivity of elements (particles) does not change during 

deformations. However, those methods are by nature 

extendable in the case of changing the connectivity of particles. 

A combination is done by a simple linear interpolation of 

current velocities in order to keep the high-speed performance 

and the robustness of an individual method. Consequently, a 

variety of materials between a fluid and an elastic solid can be 

changed by only a parameter of linear interpolation. We also 

discuss how to bring our approximate method closer to the 

actual motions of viscoelastic fluids including merging or 

splitting of objects. 

 

II. RELATED WORK 

2.1  Fluid simulation 

Fluid simulation became widely known in computer graphics 

by a method of Foster and Metaxas [9]. Their method solves 

Navier-Stokes equation, the governing equation of fluids, by 

discretizing using an Eulerian grid. Stam [24] simplified an 

advective term by using the semi-Lagrangian method to 

improve an Eulerian grid-based method with robustly taking a 

large time step. On the other hand, Lagrangian particle methods 

such as Smoothed-Particle Hydrodynamics (SPH) [14] were 

well studied recently. SPH was first introduced in astrophysics 

and Müller et al. [15] successfully used in computer graphics at 
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interactive rates. Adams et al. [1] used an adaptive sampling 

method to improve computational performance. Performances 

were further improved by using GPUs [12]. SPH can also be 

used for representing other types of materials between fluids 

and solids. For example, Solenthaler et al. [23] additionally 

introduced a temperature term to represent melting and 

solidification of objects. 

2.2 Elastic solid animation 

Elastic solid animation was introduced by Terzopoulos et al. 

[26] using a finite difference method. Several other methods 

were also studied such as a mass-spring method [2], a FEM 

method [16], a particle-based method [18]. Those methods are, 

however, time-consuming due to exact and robust solutions of 

elasticity equation. On the other hand, a Shape Matching (SM) 

method originally proposed by Müller et al. [17] is a 

geometry-based approach and imitates an elastic deformation. 

The main advantage is its fast and unconditionally stable 

computation; there is no need to solve the equation of motion. 

Later, its computational performance was further improved by 

using an adaptive sampling [25] or by using a lattice shape [21]. 

As an example to imitate physical motions, Rungjiratananon et 

al. [22] recently extended SM to simulate human's hairstyles. 

Becker et al.[4] used both SPH and SM to represent elastic 

motions. This is most relevant research to ours in the sense that 

SPH and SM can be efficiently combined. The main difference 

is that they integrate the computation of rotation matrices in SM 

into SPH, while our method simply interpolate velocities so as 

to keep the high-speed performance and the robustness of an 

individual method. 

2.3 Viscoelastic Fluids / Viscoplastic solids simulation 

Goktekin et al. [11] realized a viscoelastic fluid simulation 

by taking into account an elastic term to an Eulerian grid-based 

fluid simulation [8]. Bargteil et al. [3] achieved a robust 

viscoplastic solid simulation by using a FEM method and 

remeshing. Several methods based on SPH were also studied 

for considering elasticity, plasticity, and viscosity. Clavet et al. 

[6] added springs between pairs of neighboring particles in SPH. 

Paiva et al. [19] modified the traditional N-S equation and 

employed generalized Newtonian liquid model to simulate 

viscoplastic fluids. Solenthaler et al. [23] introduced a unified 

particle model for the simulation of liquids and deformable 

solids as well as rigid objects. This is the most relevant research 

to ours. Chang et al. [5] introduced more general elastic stress 

term to the N-S equation and changed the viscosity and elastic 

stress coefficients according to the temperature variation. 

Gerszewski et al. [10] applied arbitrary constitutive models to 

compute elastic forces in viscoplastic solids by using 

deformation gradients. All these methods are, however, hard to 

be used in real-time applications. This is mainly because each 

time step has to be set to an extremely small value to robustly 

handle numerical simulations. 

 

III. ANIMATION FRAMEWORK 

In this section, we describe our animation framework to 

compute the behavior of viscoelastic fluids. As described in 

Section 1, a key idea is to combine two well-established 

approaches for fast and stable computations. It should be noted 

that our approach does not solve a combined N-S equation with 

an additional elastic term like as most of previously-published 

approaches. In our approach two fast and stable approaches, 

SPH for fluid simulation and SM for elastic solid deformation, 

are processed independently in each simulation step and two 

velocities are linearly interpolated. A new position is then 

computed by integrating an interpolated velocity. Note that we 

do not consider the plastic deformations, since we use SM to 

represent elastic motions approximately. 

3.1 Combination of SPH and SM 

We briefly introduce two approaches, SPH and SM, at first. 

We then describe how to combine these two approaches. 

 

SPH formulations. SPH is an interpolation method with each 

particle carrying field quantities. A force for each particle 

              is computed based on the physical properties 

of neighboring particle   weighted by kernel functions. 

According to the N-S equation, forces for each particle are the 

pressure force   
     

, the viscosity force   
     , and the 

external force   
    including gravity force and collision 

response forces as follows:  
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where   ,                    ,    are mass, density, 

and velocity vector respectively. Also,            ,   ,  , 

 denote pressure, initial density, pressure coefficient, and 

viscosity coefficient respectively. Note that neighboring 

particles    have to be updated for each simulation step. A 

kernel function        is defined as follows: 
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Based on three forces described above, an acceleration 

vector   
    is calculated as follows:  
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A position and a velocity vector are updated from such an 

acceleration vector by using the standard Euler method as 

follows:  
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SM formulations. SM imitates an elastic solid deformation. 

Figure 1 illustrates the original SM scheme. The reference 

shape      is rigidly transformed to its goal position   by using 

a rotation matrix   and a transformation vector  . We compute 

  as a barycenter position, and   by the polar decomposition of 

a linear transformation matrix from      to  . A position   of 

each particle is then pulled towards its goal position  . 

 

 
 

Fig. 1. Computation of   and   in SM. 

 

Here we slightly extend a method proposed by Rivers and 

James [21] to fit our animation framework. The original 

scheme utilizes a lattice structure to improve computational 

performance. In contrast, our extension adapts the case that 

neighboring particles are arbitrary located. 

For a particle             , neighboring particles        

within a support sphere of radius    are collected. A goal 

position    is then defined as the average of rigidly transformed 

positions from neighboring particles,  

 

    
 

    
       

      
        

 

 (7)  

 

where    and    are a rotation matrix and a transformation 

vector of rigid motion in each neighbor particle   . 

 

   
 

Fig. 2. Comparison to the motions in SM with different settings of   . The 

length of the bar is 40.0. From left to right:       ,       ,       . 
 

Fig. 2 demonstrates the results for different support radii   . 

A larger support size makes an object stiffer due to the effect of 

more particles. The computation time also increases much more 

for a larger support size. 

A position and a velocity vector are updated from a goal 

position as follows:  
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Combination by the interpolation of velocities. In our 

combination method, velocities of both SPH and SM are firstly 

updated independently by Equation (5) and (8). Such two 

velocities are linearly interpolated by using only a parameter 

         . A new position is then computed by using an 

Euler integration scheme as follows:  
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     (11)  

 

In addition to the interpolation of velocities described above, 

the use of acceleration vectors or positions can be considered 

for the combination. However, there is a possibility that it is 

computationally unstable due to the division by a small   . 
Our method can represent various types of materials with 

different physical properties by changing a parameter  . Figure 

3 compares the shapes of cubes with different   when they are 

fallen on the floor. As shown in this figure, a cube deforms like 

an elastic solid with      , and a cube flows like a fluid with 

     . Also, a viscoelastic behavior can be presented when   
is set to an intermediate value between 0 and 1. An elastic 

property is greatly appeared as like a jelly with      , and a 

fluid property is stronger as like a toothpaste with       in 

Figure 3. 

 

Adjusting the movement of particles. In SPH, a time interval 

      is dynamically changed to keep the simulation stable. 

      is controlled so as not to move larger than a support 

radius of a particle in each simulation step, i.e.,       is set in 

order to satisfy the following inequation;  

 

              
         (12)  

 

where        
      denotes a maximum value of the 

magnitude of velocities for all particles. If a velocity is large, a 

time interval is set to a small value and then the movement 

distance of a particle in each step becomes small. 

On the other hand,      has little effect on the movement of 

particles in SM. In Equation (8) a velocity becomes large for a 

small     . However, in Equation (9) a position is updated by 

adding a velocity multiplied with     , then the effect of      

gets balanced out. Consequently, the effect of a fluid over the 

elasticity is relatively changed with different settings of      . 

To resolve this issue, the movements of particles in SM are 

adjusted by a time interval      . That is, Equation (8), a 

formula for computing the velocity, is re-written as follows:  
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The second term on the right of Equation (8) is scaled to 

follow the dynamic change of       over its initial value 

   
   . Therefore, a position and a velocity in SM are 

automatically controlled in a balanced manner. The adjustment 

of a time interval occurs when the density of particles becomes 

high, e.g. a collision against other objects. In this case, 

velocities of particles become large due to the high pressure 

forces. In our experiments, we set    
              and a 

50 percents smaller       in maximum than    
    is observed 

during the simulation. 
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3.2 Splitting and Merging 

Splitting or merging frequently occurs in the viscoelastic 

materials. A viscoelastic object in general is split into two small 

objects when external forces stronger than internal elastic 

forces are applied to a part of its body. Two objects are merged 

when external forces of objects collided with each other exceed 

over their internal forces. 

Since in SPH each particle moves freely and the arrangement 

of particles is not fixed, splitting and merging naturally occur. 

However, in the original SM, a reference shape is used to keep 

its original shape as an elastic solid. The arrangement of 

particles in such a reference shape is fixed during the 

simulation. Therefore, splitting or merging never occurs due to 

the fixed reference shape. We apply here the following two 

extensions to establish splitting and merging with SM. 

 

Update reference shape based on material properties. We 

update a reference shape during the simulation in contrast to the 

original SM. When a reference shape is updated, neighboring 

particles in each particle are possibly changed. Splitting or 

merging can occur according to the relationship between 

neighbor particles. Note that the computational cost of such 

update is subtle since the neighboring particles are already 

constructed in SPH and can be reused. 

Several factors are considered to check whether the reference 

shape is updated or not. Firstly, the change of the object shape 

is one of key factors. Here we consider external forces adding 

to an object. This is because that a topological change of a 

viscoelastic fluid is thought to be caused by suffering external 

forces. We then check whether a reference shape is updated or 

not by the magnitude of external forces. Let        be an 

average of the magnitude of external forces for all particles. A 

reference shape is updated if          , where    denotes a 

threshold. It should be noted that    is an important parameter 

to check the update of the reference shape, e.g., setting a larger 

   tends to be harder to update the reference shape. 

Another key factor to check the update of the reference shape 

is the physical property of an object. In the case of the elastic 

solid, a reference shape does not want to be updated despite 

huge external forces. Also, a reference shape wants to be 

updated for each step in case of a fluid. To satisfy both demands, 

we relate a parameter   to   . For a small   an object is close to 

an elastic solid, and then    should be set to a large value. On 

the contrary, it is desirable for a fluid to set    to a small value 

for a large  . 

 

We then define a monotonically decreasing function as 

shown in Figure 4 to compute    according to   as follows:  

 

            (14)  

 

where    denotes a value of     for    . This function is 

especially useful in the animation which    is varied 

continuously. 

 

 
Fig. 4. A       function to compute    according to  . 

Setting the number of simulation steps for updating 
reference shape. If the update of the reference shape is applied 

in every simulation step, the reference shape is deformed like a 

fluid. A viscoelastic motion cannot then be realized. So, it is 

better to have a certain interval to check the update. Here we 

introduce a parameter    
and check the update if the number 

of simulation steps reaches   . We empirically set    2-3 

times larger than fps in our simulator to work our check well at 

reasonable computation time. 

3.3 Algorithm 

We now describe our whole algorithm below.   denotes the 

number of simulation steps to be used for checking the update 

of the reference shape. 

 

   ; 

loop 

    if            then 

        if            then 

                     ; {Update of the ref. shape} 

        end if 

    end if 

    Adjust      ; {Eq. (12)} 

     
 α=0.0 α=0.3 α=0.7 α=1.0 

t=0  t=0.8  
 

Fig. 3. Comparison of the shapes of fallen cubes with various setting of α. 
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    Compute     ; {Eq. (5)} 

    Compute    ; {Eq. (8)} 

    Compute      ,      ; {Eq. (10), (11)} 

    (Option) Rendering by      ;  
              ; 
              ; 
         ; 

end loop 

 

3.4 Rendering 

Just after positions are updated, we render the surface of the 

current particles. Although a lot of methods for the rendering of 

SPH particles have been recently proposed, we adopt a simple 

method. We first create an implicit distance field on a regular 

grid covering particles, and then extract an iso-surface by using 

Marching Cubes algorithm [13]. 

 
(a) “Moai”,    0.0,    0.0 (left), 18.6 (middle), 34.8 (right). 

 
(b) “Armadillo”,     0.8,     0.0 (left), 12.0 (middle), 35.6 (right). 

 
(c) “Bunny”,     0.85,     0.0 (left), 15.2 (middle), 38.1 (right). 

 
(d) “Four balls in a pool”,     0.9,     0.0 (left), 26.5 (middle), 43.25 (right). 

 

Fig. 5. Experimental results of our method with different settings of   . 
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To achieve fast rendering, we first extract a part of particles 

which are on the surface, and a distance field is then created 

from those particles. In SPH, a particle on the surface tends to 

have less neighboring particles than an inner particle, and then 

its density is lower. Therefore we consider as a particle on the 

surface if its density    is less than a threshold   .  
 

IV. RESULTS AND DISCUSSION 

We discuss our results in this section. All our experiments were 

performed using a notebook PC with Intel Core 2 Duo P8700 

2.53GHz CPU and nVIDIA GeForce GT 130M GPU. Table 1 

presents the statistical results of our experiments. 

Our input is a set of 3D solid points. To create uniformly- 

sampled points from polygonal meshes, we used 3D Delaunay 

triangulations in CGAL [20]. Note that we used only vertices of 

the output tetrahedra as our input. Resulting images are created 

by using Sunflow [27], an open source global illumination 

renderer. 

Fig. 5(a) shows the “Moai” model (3,764 points) with setting 

     . As can be seen from this figure, its motions are like an 

elastic solid and keep its original shape even after being 

bounced on the floor. It is to be noted that a support size is set to 

a large value to establish stiffer motions, and the average 

number of neighboring particles therefore becomes large. Also, 

a SM in our method is obviously slower than the original 

method in [21], because we adapt our method to the case that 

neighboring particles are arbitrary located. 

Fig. 5(b) shows the “Armadillo” model (4,157 points) with 

setting      . Its motions are like an elastic solid but a fluid 

property is also included. As shown in this figure, an object is 

collided and is spread on the floor; however, its shape is not 

perfectly collapsed. 

Fig. 5(c) shows the “Bunny” model (4,185 points) with 

setting       . Its motions are like a fluid with some 

elasticity. This experiment presents an example of splitting and 

merging; we can see that an object is once collided with a 

hemisphere and is split into several parts. They are finally 

merged on the floor. 

Fig. 5(d) shows four balls dropped in the pool with setting 

     . Its motions are also like a fluid with a little bit 

elasticity. It can be seen that a ball is dropped and is merged 

into the pool water. 

Concerning about the computational performance of our 

method, most time-consuming part is caused by computing 

positions in SM, especially when the number of neighboring 

particles is large. Our method is still competitive because it 

keeps more than 5 times faster compared to other recently 

proposed methods for viscoelastic motions [19, 5, 10]. The 

method by Paiva et al. [19] is the fastest among three 

approaches. The computation of “Pressing Cube” composed of 

approximately 6K particles is at 1.81 FPS on a Centrino 

1.86GHz CPU as shown in [19]. In contrast our method 

establishes 14 FPS by a similar experiment. 

 

V. CONCLUSION AND FUTURE WORK 

We have proposed a practical technique for fast animation of 

viscoelastic fluids based on combining a fluid simulation by 

SPH and an elastic deformation by SM. Setting a parameter   

realizes various types of materials between a fluid and an 

elastic solid. Splitting and merging can be also presented by 

controlling the update of the reference shape in SM. Our 

method achieves high computational performance with the ease 

of changing various types of materials. 

In future work, we would like to implement our method on 

GPUs or multi-core CPUs. We think that it dramatically 

improves the computational performance even on a stand-alone 

PC. Another future work is that we would like to extend our 

simulator to deal with several different settings of materials at a 

time. 
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