
Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

Abstract--In this paper, we describe image-based point
rendering (IBPR) for multiple range images from 3D scanners.
Our approach is a natural extension of the method called
pull-push so as to render scanned points with some measurement
errors. Several extensions for rendering range images are
proposed. One is a seamless rendering of a whole object even for
points that have measurement errors. The other is a high quality
rendering to reduce blurring. Our method is suitable for roughly
checking the shape from range images.

Index Terms--Culling, Point-Based Rendering, Range Images,
Semi-transparency Rendering.

I. INTRODUCTION

 DVANCES in 3D scanning technologies have enabled
the practical creation of meshes with hundreds of millions

of polygons. One problem, however, is handling such large
meshes. The construction of meshes from range images is a
laborious work, even though various reconstruction algorithms
are proposed [14]. Therefore, it has an advantage to render
points directly, achieving a similar effect as surface rendering.

First, Levoy and Whitted [10] proposed to use points for
rendering objects. For rendering, points are faster than surface
primitives such as polygons in general. Therefore, several
approaches for rendering points combined with LOD
(Level-Of-Detail) techniques were proposed. For example,
applications to complex geological data [8], ecosystems [2],
complex scenes [11], and complex objects [1] have been
discussed.

 Points don't have the information needed for surface
rendering such as face, connectivity, etc. To give the
impression of surface rendering when using only points, one
has to address the issue of filling the ``hole'' between adjacent
points. There are roughly two approaches to fill such a hole;
one is based on using a splat, the other is an image-based
approach.

Rusinkiewicz and Levoy proposed an efficient method
called QSplat [7] for rendering large number of points from 3D
scanner. It is based on multiresolution technique to search the
minimum set of points which is sufficient for shading. However,
a special multiresolution-based data structure needs to be
computed as a pre-process to use this approach. It is a
disadvantage when the number of points is quite large.

Hiroaki Kawata is at Keio University, Faculty of Environmental Information
(e-mail: t02282hk@sfc.keio.ac.jp).

Takashi Kanai is at Keio University, Faculty of Environmental Information
(e-mail: kanai@sfc.keio.ac.jp).

ICITA2004 ISBN 0-646-42313-4

Zwicker et al. described a high-quality point rendering
[6],[9]. In [6], the information for rendering points is called
surface element (surfel). The fundamental element of surfel [6]
consists of position, color, radius and normal. Surfel rendering
techniques based on image-based approach or on splatting
approach are used for visibility testing. In splatting approach a
rectangle or a disk is used instead of a point. Zwicker et al.
described a surface splatting algorithm with an anti-aliasing
method [9]. Coconu and Hege proposed an efficient rendering
method for complex scenes used graphics hardware [12].

Grossman and Dally [4] propose a method called pull-push
for pseudo-surface rendering from points. This approach is
based on an image reconstruction: For a screen buffer, an
additional image buffer with lower resolution is prepared.
Points are stored in this image buffer to be used in a hole-filling
process.

In Image-Based rendering (IBR) techniques, the rendering
time of IBR depends on image resolution. Gortler and He [13]
proposed an efficient rendering method called LDI
(Layered-Depth-Image). LDI is applied for rendering point-
sampled geometry.

The main purpose of this research is to directly render range
images obtained from multiple scans. We call our approach
image-based point rendering (IBPR), and it is a natural
extension of pull-push approach proposed by Grossman and
Dally [4]. We first extend the method to the rendering of
multiple range images. These data from 3D scanners
sometimes include measurement errors. Because of these errors,
it can occur that two boundaries of such range images do not
overlap. Our method establishes a robust and high quality
rendering even for such data. We then improve the quality of
the rendering. We propose a novel approach so that the
resulting image is clearer.

In addition, we propose an alpha blending algorithm for
IBPR. We show that semi-transparency rendering can be done
within our approach’s framework.

II. IMAGE-BASED POINT RENDERING
In this section, we describe the data for IBPR and rendering

process. In addition, we discuss about semi-transparent method
and simple culling method for IBPR.

A. Algorithm Overview
We mainly treat range images from 3D scanners. The

minimum elements required for our point rendering are the
position ()zyx ,, and the resolution of the target data.

If we render points with color, we need an additional color

Image-Based Point Rendering for Multiple
Range Images

Hiroaki Kawata, Non-Member, IEEE, Takashi Kanai, Member, IEEE

A

Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

element ()abgr ,,, for each point. Normals can be computed
on-the-fly during the rendering process (Sec.II.C).
For our approach, we prepare an image buffer to store the

following elements: 2D position ()vu, , original 3D
position ()zyx ,, , a nearest point from view ()zyx ,, , normal
()nznynx ,, , color ()abgr ,,, and the number of points per
pixel.
These buffers are allocated before the rendering process. The

buffer size is determined according to the size of screen buffer.
We also assume that each pixel can store a floating-point value.
This floating-point pixel is used to improve the quality of the
resulting image.

Fig. 1 describes a whole rendering process of our approach.
For each frame, our rendering algorithm executes the following
process:
1. Compute the size of an image buffer.
2. Store points to an image buffer.
3. Compute normals and colors for shading.
4. Create faces and magnify an image buffer to the size of a

screen buffer.
To further to improve the quality of the resulting image, we

add one more rendering pass. We will describe in details the
two pass rendering in Section.II.E.

The size of an image buffer),(heightwidth viewportviewport

is determined by the following equation,

s
screen

viewport

s
screenviewport

height
height

width
width

=

= ,
 (1)

where s is a variable determined by fov, the density of
points and distance between view point and target object.

),(heightwidth screenscreen is the width and the height of the

resulting image.

B. Storing Point to Buffer
For each point, we apply transformations, projections and we

scale by s . The resulting 2D point is rasterized and is stored to
an image buffer.

The image buffer is described in Fig. 2. If there is another
pixel value in a stored pixel, such a value is updated by
calculating a weighted sum. The weight of each point is then
calculated as follows,

γ
nearzz

w
−

= (2)

where z is the depth value (distance to view plane) of the
point of interest, and nearz the minimum depth value of the
current pixel’s point set.

γ is a threshold to determine whether a point is included in a
face or not. It is an important parameter especially for the
rendering of multiple range images. The geometric meaning of
a threshold γ is described in Fig. 3. For each pixel, γ is
defined as a distance from the point which is nearest from view
point. If a distance between a point and the nearest point is
larger than γ , this point is regarded as on another face, then it
is not included to a pixel. Else, it is added to a pixel with
calculating a weight described in Equation (2).

By using γ , any value of a pixel can be calculated as a
weighted interpolation of points in the range of γ . This is
useful when treating multiple range images. Suppose two range
images have measurement errors, then points of two boundaries
do not overlap. Such non-overlapping points will be treated as
only one face. An appropriate value of γ largely depends on
the extent of measurement errors. To our experiments, it is
good to set γ to 1-3 times the interval of points on a range
image.

We can apply visibility testing and can draw the surface by

screen width

sc
re

en
he

ig
ht - Create face.

- Lighting.
- Magnifiy.

Input data.
- (Culling.)

3D space

z

y

x

point (x, y, z)

- [Transform]
 - Store nearest point from view.
 - Store points to an image buffer.

- Compute weighted sum.

- Compute normalscreen width

sc
re

en
he

ig
ht

viewport width

vi
ew

po
rt

he
ig

ht

Fig. 1 Rendering process of our IBPR approach.

1 pixel

[image buffer]

3D position

color (r, g, b, a)
2D position [float]

point number
nearest depth
weight (sum)

Fig. 2 The definition of an image Buffer.

depth

nearest point

view

1 pixel

Fig. 3 The geometric meaning of γ .

Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

usual methods like Z-buffer.
In IBPR, we use a weighted sum of points in the range of γ ,

instead of the nearest depth value to a view point in each pixel.

C. Creating Normal
Here we describe how to compute normals for shading. One

algorithm has been described in Hoppe et al.'s paper [5]. For
each point, this algorithm gathers neighbor points and compute
the principal axis of an inertia ellipsoid. This direction is
regarded as an approximate axis parallel to a normal vector. We
could use [5] as pre-processing. But an additional computation
to orient all normals to outer directions would be needed. In
contrast, our approach described below is executed during the
rendering process and is easier to compute.

We compute the normal of a pixel depending on its neighbor
pixels. Fig. 4 illustrates 24 patterns for creating a face from a
pixel and its neighbors. In Fig. 4, the 9 squares of each pattern
denote a pixel and its 8 neighbors. A triangle in a square shows
a face generated by 3D coordinates of pixels. A filled gray
square denotes a target pixel. If several patterns match for one
pixel, an average of normals of all these patterns is calculated.

In the above approach, if z values of neighboring two pixels
are very different, a blurring between two pixels is seen in the
resulting image. To overcome this issue, an evaluation of z
values is added. We assume here that normal vector is not
calculated when the difference between z values of two pixels
is more than a threshold. We use the same threshold as
described in Section.II.B.

Fig. 5 illustrates the above situation: In Fig. 5, filled squares
show pixels near view point and white squares show pixels far
from filled pixel. The arrows from target pixel show the region
of interest. To compute a normal vector for a pixel, only a
region surrounded by solid lines is considered. Fig. 6 shows the
results with or without considering such a threshold.
Considering a threshold decreases a burring effect.

D. Creating Face
We create faces for a given pixel by using neighbor pixels.

As shown in Fig. 7, we determine whether a triangle or a
rectangle (or nothing) is defined by referring neighbor three or
four pixels. A point in a pixel shows that a pixel has at least one
3D position. Filled regions denote a triangle or a rectangle
created by the above operation.

After this operation, the image buffer is scaled using s to fit
the size of the screen buffer. The color of a scaled face (defined
as a set of pixels) can be computed by a standard shading
calculation.

Faces are created from the image buffer by magnification. In
this process, positions that project onto 2D space (stored by
floating-point values) for each pixel are used to magnify
vertices of faces. If we use rasterized 2D positions (stored in
integer values) for magnification, the quality of the resulting
image could be decreased. Fig. 8 shows such a situation. The
left and the right figures illustrate the results using integer value
and floating-point value positions, respectively. This is the
reason why we store the floating-point value position into a
buffer during the whole rendering process.

E. Sharpness Operation
One issue of our approach is that blurring occurs in the

resulting image, especially for bumpy regions. Fig. 11
illustrates this case. From our observation, more points are
stored in a pixel in region where normal direction is nearly
perpendicular to the view vector. A similar case can occur at
silhouette edges of an object. There are some jaggies on these
edges.

We solve this issue by introducing two-pass rendering. For
silhouette edges, we change the size of the image buffer to store
points during the rendering process (Fig. 9). In the first pass,

Fig. 4 Patterns for creating face.

1 pixelnear far

Fig. 5 Range of target pixel for creating normal.

(a) (b)
Fig. 6 The result with or without using threshold. (a) without threshold.
(b) with threshold.

1 pixel Triangle Quad

Fig. 7 Creating Face.

integer value floating-point value

Magnification Magnification

Fig. 8 Magnification using floating point values of vertices.

Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

we set the size of the image buffer larger (then s is smaller)
than that used in one-pass rendering. This reduces the number
of points stored in each pixel and then blurring can also be
reduced. According to our experiments, gives nice results
setting s to a 0.83-0.66 times smaller value than for one-pass
rendering.

For the second pass, we set the image buffer size as big as
that used one-pass rendering. More concretely, we do not create
faces for a pixel satisfying with either one of the following two
conditions:

A) The number of points in a pixel is more than a
threshold.

B) A normal direction of a pixel is nearly perpendicular to
view vector (Fig. 10).

The final result is obtained by using the second pass results
everywhere but in A and B-type pixels where high resolution
first pass results are used.

Fig. 11 illustrates the comparison between one and two pass
rendering. Fig. 11 (a), (b) are examples of silhouette edges. It
can be seen from the results that two-pass rendering produces
more accurate and smooth silhouette edges. Fig. 11 (c), (d) are
a examples of a bumpy region including a concave shape. The
image generated by two-pass rendering is sharper than the one
generated by one-pass rendering.

F. Semi-Transparency Rendering
In this subsection, we describe a semi-transparency

rendering technique that can be used within the framework of
our IBPR.

As for semi-transparency rendering, Everitt has proposed a
technique which is ordering independent semi-transparent
algorithm [3]. In this method, a multi-pass rendering is needed
in order to determine faces which are in the back.

Our semi-transparency rendering is based on generating two
or more layers in an image buffer. Fig. 12 illustrates an
example. Each pixel of an image buffer has several layers. Each
layer (represented by dot lines) consists of several 2D points
and has its own depth, color and 2D coordinates. The layer

attributes (color, depth, 3D position, normal) are calculated by
averaging the 2D point’s attributes.

Semi-transparency rendering can be done by the following
procedure:

• For each rasterized 2D point, its depth value is
compared to that of each existing layer. If it is outside
every layer, a new layer is created and this 2D point is
stored inside. If the depth value is within the range of
an existing layer (layerthreshold), the point is added to

this layer and the layer’s attributes are updated.
• Within each pixel, layers are sorted according to depth

values.
• For each layer within a pixel, a normal vector is

calculated using the method described in Section.II.C
and we apply shading operation to compute the layer’s
color inside this pixel.

• To compute final pixel color we compose the color of
each layer. The blending operation is using the
following equation:

1)1(

,)1(

1

0000

≥+−=

+−=

− nforcrr

ccr

nnnnn

background

αα

αα
 (3)

where ir is the resulting color of the operation, c is
color of the layer. ()10 ≤≤ αα denotes transparency of
each layers. N being the number of layers in the pixel
color will be 1−Nr .

G. Process of Culling
In this subsection, we describe a culling technique for IBPR.

two-pass renderingone-pass rendering
First Pass Second Pass

screen width

sc
re

en
he

ig
ht

viewport width

vi
ew

po
rt

he
ig

ht

screen width

sc
re

en
he

ig
ht

viewport width

vi
ew

po
rt

he
ig

ht

screen width

sc
re

en
he

ig
ht

viewport width

vi
ew

po
rt

he
ig

ht

Fig. 9 The resolution of one-pass and two-pass rendering.

edge

near

far

1 pixel
view

Fig. 10 The number of point of a pixel.

(a) (b)

(c) (d)

Fig. 11 Results with different rendering passes. (a), (b) silhouette edges.
(c), (d) a bumpy region. (a), (c): one-pass. (b), (d): two-pass.

view

1

2

1

2

21

1

3

nearest surface

layer

1 pixel

threshold layer

Fig. 12 Layer for semi-transparency.

Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

IBPR doesn’t need to combine all range scan images. We can
select range images depending on the view and thus increase
the rendering speed.

Here we explain a simple culling method. Our approach is
the same as the general back-face culling approach used for
drawing surfaces. For each range image, we calculate a dot
product between the direction of scanning and the view
direction, and determine whether it should be included for
drawing or not.

III. RESULTS
We used two range images directly to evaluate the efficiency

of our approach. In these experiments, computation times are
measured on personal computer with Athlon XP 2600+
2.09GHz CPU.

One example is ``Stanford Bunny'' range image. Fig. 13
shows such range image and the results of point rendering.Fig.
13 (a) and (b) denote two single scan images respectively. Fig.
13 (c) shows a whole range image scanned from 10 directions
(362,272 points). Fig. 13 (d) is the result of a single-pass point
rendering using the data in Fig. 13 (c). It can be seen that
seamless rendering can be done even for such multiple range
images. Fig. 13 (e) is the result of rendering with colors. Fig. 13
(f) is the result of semi-transparency rendering. A sphere was
inserted into Bunny's body for illustration purpose.

The other example uses ``Happy Buddha''’s range images.
The results of rendering for points scanned from 18 directions

(1,274,573 points) are described in Fig. 14. In this figure, the
comparison between one-pass and two-pass rendering is shown.
From the comparison of two close-up views, it can be seen that
the blurring effect is reduced by two-pass rendering. The
computation time is describing in Table. I.

We also examine culling process using ``Beetle'' range
images. This model scanned from 9 directions (559,327 points)
is described in Fig. 15. This rendering result with culling
process time is describing in Table. II.

IV. CONCLUSION AND FUTURE WORK
We have proposed an image-based point rendering approach

for multiple range images. Our approach is a natural extension
of pull-push method. We have shown that the shading, which is
close to surface rendering, can be established even for range
data with some measurement errors. No special data structure
for a pre-process is needed. Especially, normals needed for
shading can be computed during the rendering process. We
have also proposed a two-pass rendering algorithm, which
enables high-quality rendering. We have also shown that the
resulting image has less blurs thanks to our extension.
Furthermore, we have proven that semi-transparency rendering
can be done within the framework of our image-based point
rendering.

One future direction is hardware acceleration of our
image-based approach. We are especially interested in using
programmable shaders to implement such accelerations.

ACKNOWLEDGMENT
``Stanford Bunny'' and ``Happy Buddha'' range images are

courtesy of Stanford University Computer Graphics Laboratory.
And ``Beetle'' range images are courtesy of Prof. Kenji
Kohiyama at Keio University. We would also like to thank Mr.
Alexandre Gouaillard for proofreading this paper.

REFERENCES
[1] B. Chen and M. X. Nguyen. Pop: a hybrid point and polygon rendering

system for large data. In Proc. IEEE Visualization 2001, pages 45–52,
2001.

[2] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. Interactive
visualization of complex plant ecosystems. In Proc. IEEE Visualization
2002, pages 219–226, 2002.

Fig. 13 The results of rendering ``Bunny'' range data.

(a) (b)

(c) (d)

(e) (f)

Model S Alpha Points Pass Time
bunny 2.7 No 362272 1 0.20
bunny 2.7 No 362272 2 0.41
bunny 2.7 Yes 362272 1 0.44
bunny 2.7 Yes 362272 2 0.91
buddha 1.6 No 1274573 1 0.47
buddha 1.6 No 1274573 2 0.98

Table. I Computation time (second) for rendering “bunny” and
“Buddha” data.

Model S Culling Points Time
Beetle 1.31 Off 559327 0.28
Beetle 1.31 On 307933 0.23

Table. II Computation time (second) for rendering “Beetle” data.

Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004)

[3] C. Everitt. Interactive order-independent transparency. nVIDIA Inc.,
2000. available from
http://developer.nvidia.com/view.asp?IO=Interactive_Order_Transparen
cy.

[4] J. Grossman and W. J. Dally. Point sample rendering. In Proc. 9th
Eurographics Workshop on Rendering, pages 181–192, 1998.

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. Computer Graphics
(Proc. SIGGRAPH 1992), 26(2):71–78, 1992.

[6] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: surface
elements as rendering primitives. In Computer Graphics (Proc.
SIGGRAPH 2000), pages 335–342. ACM Press, New York, 2000.

[7] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresoliton point rendering
system for large meshs. In Computer Graphics (Proc. SIGGRAPH 2000),
pages 343–352. ACM Press, New York, 2000.

[8] M. Stamminger and G. Drettakis. Interactive sampling and rendering for
complex and procedural geometry. In Proc. 11th Eurographics Workshop
on Rendering, pages 151–162, 2001.

[9] M. Zwicker, H. Pfister, J. van Beer, and M. Gross. Surface splatting. In
Computer Graphics (Proc. SIGGRAPH 2001), pages 371–378.
ACMPress, New York, 2001.

[10] M. Levoy and T.Whitted. The Use of Points as a Display Primitive. TR
85-022. Univ. of North Carolina at Chapel Hill, 1985.

[11] M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide and W. Straßer.
The Randomized z-Buffer Algorithm: Interactive Rendering of Highly
Complex Scenes. In Computer Graphics (Proc. SIGGRAPH2001), pages
361–370. 2001.

[12] L. Coconu and H. Hege. Hardware-Oriented Point-based Rendering of
Complex Scenes. In Proc. 13th Eurographics Workshop on Rendering,
2002.

[13] S. J. Gortler and L. He. Rendering Layered Depth Images.
MSTR-TR-97-09, 1997.

[14] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. In Computer Graphics, Volume 21,
Number 4, July 1987.

Fig. 14 The results of rendering ``Happy Buddha'' range data. (a) one-pass rendering. (b) two-pass rendering.

(a) (b)

(a) (b)

Fig. 15 The results of rendering ``Beetle'' range data. (a) without culling. (b) with culling.

