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Abstract--In this paper, we describe image-based point 
rendering (IBPR) for multiple range images from 3D scanners. 
Our approach is a natural extension of the method called 
pull-push so as to render scanned points with some measurement 
errors.  Several extensions for rendering range images are 
proposed.  One is a seamless rendering of a whole object even for 
points that have measurement errors. The other is a high quality 
rendering to reduce blurring. Our method is suitable for roughly 
checking the shape from range images. 
 

Index Terms--Culling, Point-Based Rendering, Range Images, 
Semi-transparency Rendering. 

I. INTRODUCTION 

 DVANCES in 3D scanning technologies have enabled 
the practical creation of meshes with hundreds of millions 

of polygons. One problem, however, is handling such large 
meshes. The construction of meshes from range images is a 
laborious work, even though various reconstruction algorithms 
are proposed [14].  Therefore, it has an advantage to render 
points directly, achieving a similar effect as surface rendering. 

First, Levoy and Whitted [10] proposed to use points for 
rendering objects. For rendering, points are faster than surface 
primitives such as polygons in general. Therefore, several 
approaches for rendering points combined with LOD 
(Level-Of-Detail) techniques were proposed. For example, 
applications to complex geological data [8], ecosystems [2], 
complex scenes [11], and complex objects [1] have been 
discussed. 

 Points don't have the information needed for surface 
rendering such as face, connectivity, etc. To give the 
impression of surface rendering when using only points, one 
has to address the issue of filling the ``hole'' between adjacent 
points. There are roughly two approaches to fill such a hole; 
one is based on using a splat, the other is an image-based 
approach. 

Rusinkiewicz and Levoy proposed an efficient method 
called QSplat [7] for rendering large number of points from 3D 
scanner. It is based on multiresolution technique to search the 
minimum set of points which is sufficient for shading. However, 
a special multiresolution-based data structure needs to be 
computed as a pre-process to use this approach. It is a 
disadvantage when the number of points is quite large. 
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Zwicker et al. described a high-quality point rendering 
[6],[9]. In [6], the information for rendering points is called 
surface element (surfel). The fundamental element of surfel [6] 
consists of position, color, radius and normal. Surfel rendering 
techniques based on image-based approach or on splatting 
approach are used for visibility testing. In splatting approach a 
rectangle or a disk is used instead of a point. Zwicker et al. 
described  a surface splatting algorithm with an anti-aliasing 
method [9]. Coconu and Hege proposed an efficient rendering 
method for complex scenes used graphics hardware [12]. 

Grossman and Dally [4] propose a method called pull-push 
for pseudo-surface rendering from points. This approach is 
based on an image reconstruction: For a screen buffer, an 
additional image buffer with lower resolution is prepared. 
Points are stored in this image buffer to be used in a hole-filling 
process. 

In Image-Based rendering (IBR) techniques, the rendering 
time of IBR depends on image resolution. Gortler and He [13] 
proposed an efficient rendering method called LDI 
(Layered-Depth-Image). LDI is applied for rendering point- 
sampled geometry. 

The main purpose of this research is to directly render range 
images obtained from multiple scans. We call our approach 
image-based point rendering (IBPR), and it is a natural 
extension of pull-push approach proposed by Grossman and 
Dally [4]. We first extend the method to the rendering of 
multiple range images.  These data from 3D scanners 
sometimes include measurement errors. Because of these errors, 
it can occur that two boundaries of such range images do not 
overlap. Our method establishes a robust and high quality 
rendering even for such data. We then improve the quality of 
the rendering. We propose a novel approach so that the 
resulting image is clearer. 

In addition, we propose an alpha blending algorithm for 
IBPR. We show that semi-transparency rendering can be done 
within our approach’s framework. 

II. IMAGE-BASED POINT RENDERING 
In this section, we describe the data for IBPR and rendering 

process. In addition, we discuss about semi-transparent method 
and simple culling method for IBPR. 

A. Algorithm Overview 
We mainly treat range images from 3D scanners. The 

minimum elements required for our point rendering are the 
position ( )zyx ,,  and the resolution of the target data. 

If we render points with color, we need an additional color 
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element ( )abgr ,,,  for each point. Normals can be computed 
on-the-fly during the rendering process (Sec.II.C). 
For our approach, we prepare an image buffer to store the 

following elements: 2D position ( )vu, , original 3D 
position ( )zyx ,, , a nearest point from view ( )zyx ,, , normal 
( )nznynx ,, , color ( )abgr ,,,  and the number of points per 
pixel. 
These buffers are allocated before the rendering process. The 

buffer size is determined according to the size of screen buffer. 
We also assume that each pixel can store a floating-point value. 
This floating-point pixel is used to improve the quality of the 
resulting image. 

Fig. 1 describes a whole rendering process of our approach. 
For each frame, our rendering algorithm executes the following 
process: 
1. Compute the size of an image buffer. 
2. Store points to an image buffer. 
3. Compute normals and colors for shading. 
4. Create faces and magnify an image buffer to the size of a 

screen buffer. 
To further to improve the quality of the resulting image, we 

add one more rendering pass. We will describe in details the 
two pass rendering in Section.II.E. 

The size of an image buffer ),( heightwidth viewportviewport  

is determined by the following equation, 
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where s  is a variable determined by fov, the density of 
points and distance between view point and target object. 

),( heightwidth screenscreen  is the width and the height of the 

resulting image. 

B. Storing Point to Buffer 
For each point, we apply transformations, projections and we 

scale by s . The resulting 2D point is rasterized and is stored to 
an image buffer.  

The image buffer is described in Fig. 2. If there is another 
pixel value in a stored pixel, such a value is updated by 
calculating a weighted sum. The weight of each point is then 
calculated as follows, 

γ
nearzz

w
−
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where z  is the depth value (distance to view plane) of the 
point of interest, and nearz  the minimum depth value of the 
current pixel’s point set. 

γ  is a threshold to determine whether a point is included in a 
face or not. It is an important parameter especially for the 
rendering of multiple range images. The geometric meaning of 
a threshold γ  is described in Fig. 3. For each pixel, γ  is 
defined as a distance from the point which is nearest from view 
point. If a distance between a point and the nearest point is 
larger than γ , this point is regarded as on another face, then it 
is not included to a pixel. Else, it is added to a pixel with 
calculating a weight described in Equation (2). 

By using γ , any value of a pixel can be calculated as a 
weighted interpolation of points in the range of γ .  This is 
useful when treating multiple range images. Suppose two range 
images have measurement errors, then points of two boundaries 
do not overlap. Such non-overlapping points will be treated as 
only one face. An appropriate value of γ  largely depends on 
the extent of measurement errors. To our experiments, it is 
good to set γ  to 1-3 times the interval of points on a range 
image. 

We can apply visibility testing and can draw the surface by 
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Fig. 1 Rendering process of our IBPR approach. 
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Fig. 2 The definition of an image Buffer. 
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usual methods like Z-buffer. 
In IBPR, we use a weighted sum of points in the range of γ , 

instead of the nearest depth value to a view point in each pixel. 

C. Creating Normal 
Here we describe how to compute normals for shading.  One 

algorithm has been described in Hoppe et al.'s paper [5]. For 
each point, this algorithm gathers neighbor points and compute 
the principal axis of an inertia ellipsoid. This direction is 
regarded as an approximate axis parallel to a normal vector. We 
could use [5] as pre-processing. But an additional computation 
to orient all normals to outer directions would be needed.  In 
contrast, our approach described below is executed during the 
rendering process and is easier to compute. 

We compute the normal of a pixel depending on its neighbor 
pixels. Fig. 4 illustrates 24 patterns for creating a face from a 
pixel and its neighbors. In Fig. 4, the 9 squares of each pattern 
denote a pixel and its 8 neighbors. A triangle in a square shows 
a face generated by 3D coordinates of pixels. A filled gray 
square denotes a target pixel. If several patterns match for one 
pixel, an average of normals of all these patterns is calculated. 

In the above approach, if z values of neighboring two pixels 
are very different, a blurring between two pixels is seen in the 
resulting image. To overcome this issue, an evaluation of z 
values is added. We assume here that normal vector is not 
calculated when the difference between z values of two pixels 
is more than a threshold.  We use the same threshold as 
described in Section.II.B. 

Fig. 5 illustrates the above situation: In Fig. 5, filled squares 
show pixels near view point and white squares show pixels far 
from filled pixel. The arrows from target pixel show the region 
of interest. To compute a normal vector for a pixel, only a 
region surrounded by solid lines is considered. Fig. 6 shows the 
results with or without considering such a threshold. 
Considering a threshold decreases a burring effect. 

D. Creating Face 
We create faces for a given pixel by using neighbor pixels. 

As shown in Fig. 7, we determine whether a triangle or a 
rectangle (or nothing) is defined by referring neighbor three or 
four pixels. A point in a pixel shows that a pixel has at least one 
3D position. Filled regions denote a triangle or a rectangle 
created by the above operation. 

After this operation, the image buffer is scaled using s  to fit 
the size of the screen buffer. The color of a scaled face (defined 
as a set of pixels) can be computed by a standard shading 
calculation. 

Faces are created from the image buffer by magnification. In 
this process, positions that project onto 2D space (stored by 
floating-point values) for each pixel are used to magnify 
vertices of faces. If we use rasterized 2D positions (stored in 
integer values) for magnification, the quality of the resulting 
image could be decreased. Fig. 8 shows such a situation. The 
left and the right figures illustrate the results using integer value 
and floating-point value positions, respectively. This is the 
reason why we store the floating-point value position into a 
buffer during the whole rendering process. 

E. Sharpness Operation 
One issue of our approach is that blurring occurs in the 

resulting image, especially for bumpy regions. Fig. 11 
illustrates this case. From our observation, more points are 
stored in a pixel in region where normal direction is nearly 
perpendicular to the view vector. A similar case can occur at 
silhouette edges of an object. There are some jaggies on these 
edges. 

We solve this issue by introducing two-pass rendering. For 
silhouette edges, we change the size of the image buffer to store 
points during the rendering process (Fig. 9). In the first pass, 
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we set the size of the image buffer larger (then s  is smaller) 
than that used in one-pass rendering. This reduces the number 
of points stored in each pixel and then blurring can also be 
reduced. According to our experiments, gives nice results 
setting s  to a 0.83-0.66 times smaller value than for one-pass 
rendering. 

For the second pass, we set the image buffer size as big as 
that used one-pass rendering. More concretely, we do not create 
faces for a pixel satisfying with either one of the following two 
conditions: 

A) The number of points in a pixel is more than a 
threshold. 

B) A normal direction of a pixel is nearly perpendicular to 
view vector (Fig. 10). 

The final result is obtained by using the second pass results 
everywhere but in A and B-type pixels where high resolution 
first pass results are used. 

Fig. 11 illustrates the comparison between one and two pass 
rendering. Fig. 11 (a), (b) are examples of silhouette edges. It 
can be seen from the results that two-pass rendering produces 
more accurate and smooth silhouette edges. Fig. 11 (c), (d) are 
a examples of a bumpy region including a concave shape. The 
image generated by two-pass rendering is sharper than the one 
generated by one-pass rendering. 

F. Semi-Transparency Rendering 
In this subsection, we describe a semi-transparency 

rendering technique that can be used within the framework of 
our IBPR. 

As for semi-transparency rendering, Everitt has proposed a 
technique which is ordering independent semi-transparent 
algorithm [3]. In this method, a multi-pass rendering is needed 
in order to determine faces which are in the back. 

Our semi-transparency rendering is based on generating two 
or more layers in an image buffer. Fig. 12 illustrates an 
example. Each pixel of an image buffer has several layers. Each 
layer (represented by dot lines) consists of several 2D points 
and has its own depth, color and 2D coordinates. The layer 

attributes (color, depth, 3D position, normal) are calculated by 
averaging the 2D point’s attributes. 

Semi-transparency rendering can be done by the following 
procedure: 

• For each rasterized 2D point, its depth value is 
compared to that of each existing layer. If it is outside 
every layer, a new layer is created and this 2D point is 
stored inside.  If the depth value is within the range of 
an existing layer ( layerthreshold ), the point is added to 

this layer and the layer’s attributes are updated. 
• Within each pixel, layers are sorted according to depth 

values. 
• For each layer within a pixel, a normal vector is 

calculated using the method described in Section.II.C 
and we apply shading operation to compute the layer’s 
color inside this pixel. 

• To compute final pixel color we compose the color of 
each layer. The blending operation is using the 
following equation: 
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where ir  is the resulting color of the operation, c  is 
color of the layer. ( )10 ≤≤ αα denotes transparency of 
each layers. N  being the number of layers in the pixel 
color will be 1−Nr . 

G. Process of Culling 
In this subsection, we describe a culling technique for IBPR. 
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Fig. 9 The resolution of one-pass and two-pass rendering. 
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Fig. 11 Results with different rendering passes. (a), (b) silhouette edges. 
(c), (d) a bumpy region. (a), (c): one-pass. (b), (d): two-pass. 
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IBPR doesn’t need to combine all range scan images. We can 
select range images depending on the view and thus increase 
the rendering speed. 

Here we explain a simple culling method. Our approach is 
the same as the general back-face culling approach used for 
drawing surfaces. For each range image, we calculate a dot 
product between the direction of scanning and the view 
direction, and determine whether it should be included for 
drawing or not. 

III. RESULTS 
We used two range images directly to evaluate the efficiency 

of our approach. In these experiments, computation times are 
measured on personal computer with Athlon XP 2600+ 
2.09GHz CPU. 

One example is ``Stanford Bunny'' range image. Fig. 13 
shows such range image and the results of point rendering.Fig. 
13 (a) and (b) denote two single scan images respectively. Fig. 
13 (c) shows a whole range image scanned from 10 directions 
(362,272 points).  Fig. 13 (d) is the result of a single-pass point 
rendering using the data in Fig. 13 (c). It can be seen that 
seamless rendering can be done even for such multiple range 
images. Fig. 13 (e) is the result of rendering with colors. Fig. 13 
(f) is the result of semi-transparency rendering. A sphere was 
inserted into Bunny's body for illustration purpose.  

The other example uses ``Happy Buddha''’s range images. 
The results of rendering for points scanned from 18 directions 

(1,274,573 points) are described in Fig. 14. In this figure, the 
comparison between one-pass and two-pass rendering is shown. 
From the comparison of two close-up views, it can be seen that 
the blurring effect is reduced by two-pass rendering. The 
computation time is describing in Table. I. 

We also examine culling process using ``Beetle'' range 
images. This model scanned from 9 directions (559,327 points) 
is described in Fig. 15. This rendering result with culling 
process time is describing in Table. II. 

IV. CONCLUSION AND FUTURE WORK 
We have proposed an image-based point rendering approach 

for multiple range images. Our approach is a natural extension 
of pull-push method. We have shown that the shading, which is 
close to surface rendering, can be established even for range 
data with some measurement errors. No special data structure 
for a pre-process is needed. Especially, normals needed for 
shading can be computed during the rendering process. We 
have also proposed a two-pass rendering algorithm, which 
enables high-quality rendering.  We have also shown that the 
resulting image has less blurs thanks to our extension. 
Furthermore, we have proven that semi-transparency rendering 
can be done within the framework of our image-based point 
rendering. 

One future direction is hardware acceleration of our 
image-based approach.  We are especially interested in using 
programmable shaders to implement such accelerations. 
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Fig. 13 The results of rendering ``Bunny'' range data. 
 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Model S Alpha Points Pass Time
bunny 2.7 No 362272 1 0.20 
bunny 2.7 No 362272 2 0.41 
bunny 2.7 Yes 362272 1 0.44 
bunny 2.7 Yes 362272 2 0.91 
buddha 1.6 No 1274573 1 0.47 
buddha 1.6 No 1274573 2 0.98 

Table. I Computation time (second) for rendering “bunny” and 
“Buddha” data. 
 

Model S Culling Points Time 
Beetle 1.31 Off 559327 0.28 
Beetle 1.31 On 307933 0.23 

Table. II Computation time (second) for rendering “Beetle” data. 
 



Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004) 

[3] C. Everitt. Interactive order-independent transparency. nVIDIA Inc., 
2000. available from 
http://developer.nvidia.com/view.asp?IO=Interactive_Order_Transparen
cy. 

[4] J. Grossman and W. J. Dally. Point sample rendering. In Proc. 9th 
Eurographics Workshop on Rendering, pages 181–192, 1998. 

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. 
Surface reconstruction from unorganized points. Computer Graphics 
(Proc. SIGGRAPH 1992), 26(2):71–78, 1992. 

[6] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: surface 
elements as rendering primitives. In Computer Graphics (Proc. 
SIGGRAPH 2000), pages 335–342. ACM Press, New York, 2000. 

[7] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresoliton point rendering 
system for large meshs. In Computer Graphics (Proc. SIGGRAPH 2000), 
pages 343–352. ACM Press, New York, 2000. 

[8] M. Stamminger and G. Drettakis. Interactive sampling and rendering for 
complex and procedural geometry. In Proc. 11th Eurographics Workshop 
on Rendering, pages 151–162, 2001. 

[9] M. Zwicker, H. Pfister, J. van Beer, and M. Gross. Surface splatting. In 
Computer Graphics (Proc. SIGGRAPH 2001), pages 371–378. 
ACMPress, New York, 2001. 

[10] M. Levoy and T.Whitted. The Use of Points as a Display Primitive. TR 
85-022. Univ. of North Carolina at Chapel Hill, 1985. 

[11] M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide and W. Straßer. 
The Randomized z-Buffer Algorithm: Interactive Rendering of Highly 
Complex Scenes. In Computer Graphics (Proc. SIGGRAPH2001), pages 
361–370. 2001. 

[12] L. Coconu and H. Hege. Hardware-Oriented Point-based Rendering of 
Complex Scenes. In Proc. 13th  Eurographics Workshop on Rendering, 
2002. 

[13] S. J. Gortler and L. He. Rendering Layered Depth Images. 
MSTR-TR-97-09, 1997. 

[14] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D 
Surface Construction Algorithm. In Computer Graphics, Volume 21, 
Number 4, July 1987. 

 

Fig. 14 The results of rendering ``Happy Buddha'' range data. (a) one-pass  rendering. (b) two-pass rendering. 
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Fig. 15 The results of rendering ``Beetle'' range data. (a) without culling. (b) with culling. 
 


