
GPU-based Rendering of Sparse Low-degree IMplicit Surfaces

Takashi Kanai
The University of Tokyo

Yutaka Ohtake Hiroaki Kawata Kiwamu Kase
RIKEN, VCAD Modeling Team

Abstract

Implicit surface is a well-known surface representation. Geometric
details of an object can be represented using less surface primitives
than other representations such as polygonal meshes. In this paper,
we propose a fast and a direct rendering method of SLIM (Sparse
Low-degree IMplicit) surfaces using recent programmable GPUs.
Our approach establishes a direct rendering of implicit surfaces
based on the ray casting approach. Geometric processes such as an
intersection between a ray and an implicit surface and blending for
PU (Partition of Unity) are performed in the fragment program on
GPUs. For large models, a hierarchical structure of a SLIM surface
can be used for LOD rendering or view frustum culling to speed up
the rendering. We demonstrate that highly parallel processing using
GPUs enables efficient rendering of implicit surfaces.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, Surface, Solid and Object
Representations; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms

Keywords: Implicit surface, SLIM, Ray casting, GPU, Fragment
program.

1 Introduction

Implicit surfaces including blobby model [Muraki 1991], metaballs
[Nishimura et al. 1985], soft objects [Wyvill et al. 1986], and RBF
(Radial-Basis Functions) [Savchenko et al. 1995; Carr et al. 2001]
are well-known surface representations. The combination of multi-
ple implicit surfaces can define a solid model strictly. From points
with normal vectors, a volumetric field of an object can be defined
by a set of implicit surfaces. In this field inside or outside of an ob-
ject can be defined and the zero-set of such a volumetric field repre-
sents an iso-surface which approximates points. In these represen-
tations, a detailed smooth geometry of an object can be represented
using less number of primitives than a polygonal mesh widely used
in 3DCG applications.

MPU (Multi-level Partition of Unity) implicit surfaces [Ohtake et al.
2003] or SLIM (Sparse Low-degree IMplicit) surfaces [Ohtake et al.
2005] are recently-developed non-conforming implicit surface rep-
resentations. In these surface representations, each node has a sup-
port sphere and a low-degree implicit polynomial function. A po-
sition or its derivative of a point on a surface is calculated by the
weighted sum of a set of function values of several overlapped im-
plicit surfaces. Since MPU or SLIM itself has a hierarchical tree
structure, a set of implicit surfaces with arbitrary resolution can be
quickly extracted.

Figure 1: Left: the “moai” mesh (20K triangles) rendered by Phong
shading. Right: A SLIM surface approximation of the mesh ver-
tices (5K quadratic primitives) rendered by our GPU-based method.
While almost the same geometrical details are approximated, the
polygonal artifacts are eliminated.

On the other hand, a point on such an implicit surface cannot be
represented explicitly. This poses as an inconvenience in render-
ing. There are roughly two approaches for displaying implicit sur-
faces. One is to create an intermediate polygon of a zero-set contour
by using an iso-surface extraction method such as Marching Cubes
[Lorensen and Cline 1987]. In this approach, however, both an iso-
surface polygon and a uniform or an adaptively subdivided volume
grid has to be created, which requires additional memory and time.
It is a disadvantage when deformed or animated implicit surfaces
have to be especially rendered. In this case, iso-surface polygons
have to be re-created for updating rendered images per frame.

The other approach is to render directly by ray tracing or ray cast-
ing. In this approach, a ray from an eye is defined for each pixel of
an image and an intersection between such a ray and an iso-contour
is computed. Since a per-pixel shading color is calculated by us-
ing an exact position and normal vector, a high quality image can
be generated (see Figure 1). One disadvantage is that this type of
method has a high per-pixel computational cost, which makes it
difficult to achieve real-time rendering by using traditional compu-
tational resources such as CPUs.

In this paper, a method to directly render SLIM surfaces using re-
cent programmable GPUs (Graphics Processing Units) is proposed.
Current GPUs have the ability as a processor for general-purpose
scientific computation due to their high parallelism and flexibility.
Our approach achieves fast and direct rendering of implicit surfaces
by the per-pixel computation of positions and normal vectors in the
programmable shader. In [Ohtake et al. 2005], they also propose a
method to render SLIM surfaces directly by CPUs and orthogonal

projections in addition to the definition of SLIM surfaces. In con-
trast, our approach establishes fast rendering by using GPUs and
can create more sophisticated rendering images by perspective pro-
jection.

2 Related Work

A number of ray-casting based rendering approaches for geometric
models have been proposed in the past. This type of methods in-
clude the ray tracing for point-based models [Adamson and Alexa
2003; Wald and Seidel 2005; Adams et al. 2005; Tejada et al. 2006],
the volume rendering [Engel et al. 2001; Westermann and Sevenich
2001; Kruger and Westermann 2003; Hadwiger et al. 2005], and
the ray casting for implicit surfaces [Nishita and Nakamae 1994;
de Groot and Wyvill 2005]. Specifically [Hadwiger et al. 2005]
proposed a GPU-based ray casting algorithm for rendering vol-
ume data. However, this work is concerned with surfaces over a
voxel grid, not surfaces described in implicit polynomials as like
our method.

There are several GPU-based approaches which are closely related
to our approach. [Gumhold 2003] proposed a GPU-based ray cast-
ing method by computing ray-ellipsoid intersections for tensor field
visualizations. More recently, [Sigg et al. 2006] extended his ap-
proach to handle perspective projections and applied to molecular
rendering. [Loop and Blinn 2006] proposed a GPU-based algo-
rithm for rendering up to fourth-order algebraic surfaces defined by
trivariate Bézier tetrahedra. All three approaches adopt a ray cast-
ing method for rendering implicit surfaces to achieve high qual-
ity rendering. The most significant difference compared to their
approaches is that our approach determines contour iso-surfaces
defined by several overlapping implicit polynomials in the pro-
grammable shaders of GPUs. This includes the blending operation
for PU (Partition of Unity) evaluation discussed in Section 3.3.

3 Direct Rendering of SLIM Surfaces on
GPUs

In this section we describe a direct rendering method of SLIM sur-
faces [Ohtake et al. 2005] by GPUs. A SLIM surface is defined as
the hierarchical tree structure of nodes including support spheres.
Here, we consider only the rendering for leaf nodes of such a tree
structure. Let the radius and the center position of a support sphere
in leaf nodes be ri, ci (i = 1, . . . ,N, N is the number of leaf nodes).
In the original definition of a SLIM surface [Ohtake et al. 2005],
a node has more than one low-degree implicit polynomial up to
cubic. For the convenience of explanation, each node has only a
quadratic implicit polynomial fi(x) (x = (x,y,z)) consisting of ten
coefficients:

fi(x) = a0
i x2 +a1

i y2 +a2
i z2 +a3

i xy+a4
i yz

+ a5
i zx+a6

i x+a7
i y+a8

i z+a9
i = 0. (1)

Our approach can however be easily extended to the case of higher
degrees. We also assume that each implicit polynomial is defined on
the relative coordinate system by setting a center point of a support
sphere as the origin.

Figure 2 illustrates the procedure of our rendering method. Our
method is strongly motivated by the ray-casting based point ren-
dering algorithm proposed in [Botsch et al. 2004] and [Botsch et al.
2005]. The core process of our algorithm consists of the following
three passes executed in the programmable shader:

Implicit function
texture

1st pass

Calculate an intersection
point between a ray
and an implicit function
Z culling

2nd pass

Calculate an intersection
point between a ray
and an implicit function
Compute gradients
Blend points and
gradients

3rd pass

Division of points and
gradients by the weight
sum
Shading

Points ()
texture

p Points
texture

Gradients
texture

Rendering Billboards
(or Point Sprite)

GPU

Display

Ω p Ω p Ω n

Figure 2: Overview of our algorithm on GPUs.

1st pass: A ray from a viewpoint to a fragment is defined, and in-
tersection points to an implicit polynomial f (x) = 0 are cal-
culated. For such intersection points, the nearest point p̂ to a
viewpoint is selected and is stored to a floating point texture
Ωp̂.

2nd pass: The same process of the first pass is performed to com-
pute an intersection point p and its gradient ∇ f (p). They are
blended and stored in the separate textures Ωp, Ωn.

3rd pass: A position and a normal vector of a surface are computed
using p and ∇ f (p) respectively. Shading colors are computed
using such values.

As noted above, the same process (calculation of intersection points
between a ray and an implicit polynomial) is applied in both the first
and second passes. This is because we select points to be blended
in the second pass using a point calculated in the first pass for a
fragment (see details in Section 3.3).

In the following subsections, we describe the detail of the algo-
rithm.

Note. In the following subsections, we describe the functions and
environment variables of OpenGL libraries in addition to the expla-
nation of our algorithm for the convenience of the implementation.
However, our algorithm can also be implemented using DirectX.

3.1 Drawing Supported Regions by Billboards

In the first and second passes, an intersection point between a ray
and implicit polynomial is computed in the fragment program. Ba-
sically, a fragment needed for this computation can be created by
drawing a support sphere surrounding an implicit polynomial and
then by applying the rasterization of such a sphere.

Figure 3: Rendering rectangular polygons by billboards. Left:
“moai” model (5K nodes). Right: “david’s head” model (200K
nodes).

However, drawing spheres themselves has high computational
costs. To display such a sphere, an approximated polygon is gener-
ally used. Although a more subdivided polygon can achieve higher
accuracy, the number of polygons to be displayed is exponentially
increased.

Instead of using a sphere approximated by polygons, we display
the same region on the screen by a regular rectangle whose size is a
radius of a sphere. The computational cost is dramatically reduced
since only a rectangle is drawn for generating the same number of
fragments on the screen as that of a sphere. In this case, we have to
ensure that the same size of region is drawn when we display such
a rectangle. To do so, a rectangle should always turn in front for
arbitrary viewpoints.

Two approaches can be considered to create such an “always-in-
front” rectangle. One is to use a billboard and the other is to utilize
a point sprite (GL ARB point sprite) which is one of the recent
functionalities on GPUs. In the case of using billboards, the posi-
tions of four vertices of a rectangular polygon are computed to turn
in front in advance and they are transferred to a GPU. On the other
hand, in the case of using point sprites, only the center position of
a rectangular polygon (in our case the center ci of a support sphere)
needs to be transferred to a GPU. The sprite size on the screen can
be computed in the vertex program. Hence in the view of transfer-
ring positions to a GPU, the point sprite method should be a better
choice compared to the use of billboards.

One critical disadvantage in the use of point sprites is that the max-
imum sprite size on the screen is limited depending on GPU hard-
ware1. When an object is magnified to a certain extent, large holes
appear. Our first choice here is then to use billboards. Figure 3
shows the display results of objects by billboards.

In the point-based rendering approaches, the bounding box com-
putation on screen space for perspectively-accurate rendering is re-
quired because their rendering primitives are ellipses [Zwicker et al.
2004]. In contrast, such perspective corrections are not needed in
our scheme since we use only spheres as rendering primitives.

1This parameter can be investigated using an environment variable
GL POINT SIZE MAX ARB. For example, a value measured on nVIDIA
GeForce 7900 GTX is 63.375.

c0

r0

c1

r1

(0, 0) (3, 0)

w

h

a0
0 a1

0

a2
0

a3
0 a4

0

a5
0

a6
0 a7

0

a8
0 a9

0

a0
1 a1

1

a2
1

a3
1 a4

1

a5
1

a6
1 a7

1

a8
1 a9

1

R G

B A

Figure 4: Storing implicit surface parameters to a two-dimensional
floating point texture.

3.2 Preparing Implicit Surface Textures

In order to access parameters of implicit surfaces from fragment
programs on GPUs in the first and second passes, these parameters
are stored as two-dimensional floating point textures in advance.
Fourteen floating points, a center position ci and a radius ri of a
support sphere, coefficients of an implicit polynomial (a0

i , a1
i , . . .,

a9
i), are stored for a node.

Figure 4 illustrates our scheme for storing implicit surface param-
eters to a floating-point texture. Since four floating points can be
stored in each RGBA pixel, four pixels are at least required to store
fourteen floating points for each node of a SLIM surface. In our
scheme, a center position ci and a radius of a support sphere ri are
stored to the first pixel of the four. Coefficients of an implicit poly-
nomial (a0

i , a1
i , . . ., a9

i) are then stored to the remaining three pix-
els. Note that other schemes to store such fourteen floating points
to four pixels are also possible. Our scheme described here is only
an example.

To access a texture on the GPU, the first pixel coordinate (wi, hi)
of the corresponding four pixels is assigned to each node i. In bill-
board rendering, this pixel coordinate is set as a texture coordinate
when setting four vertices of a rectangular polygon. A texture co-
ordinate is inherited to a set of fragments via the rasterization, and
is used to fetch a corresponding set of implicit surface parameters
in the fragment program. Since the texture size for preparation is
limited depending on GPU hardware2, multiple textures have to be
prepared when the number of nodes exceeds a limit size.

3.3 Computing Positions and Normal Vectors of Im-
plicit Surfaces

Computing intersection points. Figure 5 illustrates the proce-
dure to compute intersection points between a set of nodes (implicit
surfaces) and a ray. This computation is done in the local coordinate
system whose origin is the center point of a support sphere. Prior
to the computation, a view position and a fragment are converted
to such a local coordinate system respectively. Let a screen coordi-
nate (NDC, Normalized Device Coordinate) of a fragment be fs. A
formula to convert fs to a fragment f in a local coordinate system is
as follows:

f = (PM)−1 fs − ci, (2)

2This parameter can be investigated using an environment vari-
able GL MAX RECTANGLE TEXTURE SIZE EXT. Since a value measured on
nVIDIA GeForce 7900 GTX is 4096, (4,096×4,096) / 4 = 4,194,304 nodes
can be stored in a texture.

Viewpoint

Implicit function

Intersection point

Blended point
and normal vector

Screen

Fragment

p

Support sphere

p~

n~

e

f

Figure 5: Illustration of computing intersection points between im-
plicit surfaces and a ray.

This point is selected.

Billboard

Implicit function

Figure 6: Issue of Z culling for billboard rendering. A point of an
outline circle is incorrectly selected.

where P,M denote the projection matrix and the model view matrix
respectively, and ci denotes a center position of a support sphere.
Using a view position at a local coordinate system e, a ray x = f
+ t (f − e) is defined. An intersection point between a ray and an
implicit polynomial fi(x) at a node i:

fi (f+ t(f− e)) = 0, (3)

is a quadratic equation over a parameter t and can be solved analyt-
ically. In case two points are computed, the nearest one to a view
position is selected. We only consider intersection points in a sup-
port sphere. To do so, the distance from an intersection point to a
center point and a radius are compared to select an active intersec-
tion point.

1st pass: Computing p̂. Several intersection points may be
computed for a fragment because billboards projected to screen
space are overlapped. In the first pass, the closest point to a view
position p̂ (one of black-filled circles in the left of Figure 5) is se-
lected. This can be done by Z buffer culling. p̂ is used to remove
points farther from it (e.g. an outline circle in Figure 5) in the sec-
ond pass. A computed p̂ is once stored to a floating point texture Ωp̂
as an output of a fragment program. A render-to-texture function
by FBOs (Frame-Buffer Objects, GL EXT framebuffer object)
is used here to reduce the bottleneck for the transmission of such
outputs between a GPU and CPU.

Z correction. In our approach, fragments are computed from
billboards. A current Z value of a fragment then comes from the
perspective projection of a billboard. However, a Z value of an in-
tersection point between a ray and an implicit polynomial and that
of a billboard is in general different. This leads to the failure of Z
culling. Figure 6 illustrates this situation. In this case, an intersec-
tion point farther from a view point is selected due to its Z value.

To resolve this issue, Z correction is performed by computing an
exact Z value from the projection of an intersection point. A new Z

Figure 7: Grayscale images of Z values. Left: Rendering result of
billboards. Right: Result with applying Z corrections.

value Z′ by transforming an intersection point p is then:

Z′ =
ps.z−Zn

Z f −Zn
, ps = PMp, (4)

where Zn, Z f denotes Z values of near and far planes in the view
frustum respectively. ps.z denotes a z-coordinate of a position ps in
screen space after the transformation of p. Z is then replaced to Z′

in the fragment program of the first pass.

Figure 7 shows the grayscale images of Z values for the comparison
of with and without Z correction. White pixels show the small Z
values. It can be seen in the left figure that jaggies appear due to
the use of Z values for billboards. In contrast, smooth Z values are
confirmed in the right figure by applying Z corrections.

Computing positions and normal vectors. In the second and
third passes, a position p̃ and a normal vector ñ (a red-filled circle
with an arrow in Figure 5) of an implicit surface are computed for
each fragment. In our approach, a point on a SLIM surface is eval-
uated as a PU (Partition of Unity) of neighbor points p j (j = 1 . . .
M, M is the number of neighbor points) to p̂ on a ray (called the
ray-based PU [Ohtake et al. 2005]):

p̃ =
∑M

j ω jp j

∑M
j ω j

, (5)

where ω j denotes a weight defined as a Gaussian function. A nor-
mal vector is also evaluated as follows:

ñ =
n
|n|

, n =
∑M

j ω j∇ f j(p j)

∑M
j ω j

, (6)

where ∇ f j(p j) denotes a gradient of an implicit surface f j at a point
p j.

An issue to be noted here is that division operations appearing in
Equations (5) and (6) cannot be executed in a fragment program.
Computations of positions and normal vectors are hence performed
in the two separated passes as in [Botsch and Kobbelt 2003]. In the
second pass, weighted sums of both numerators and denominators
in Equations (5) and (6) are separately computed. Using such out-
puts, p̃ and ñ are computed by only applying division operations in
the third pass.

2nd pass: Blending intersection points. In the second pass,
the same process of the first pass is applied to compute an intersec-
tion point p. Additionally, p̂ is fetched from Ωp̂. A corresponding

pixel coordinate to obtain p̂ can be calculated from a screen coor-
dinate of a fragment. p̂ is used to select the neighbor points from
several overlapped intersection points p of a fragment. This is done
by comparing the distance from p̂ to p with the radius of a support
sphere ri. For the selected point p only, the gradient of an implicit
polynomial ∇ f (p) is also computed.

Both two weighted sums of those neighbor points and their gra-
dients (∑M

j ω jp j, ∑M
j ω j), (∑M

j ω j∇ f j(p j), ∑M
j ω j) are next com-

puted and stored to floating point textures Ωp, Ωn separately. These
computations are done by blending which is one of the functional-
ities of GPUs. To use the blending functionality, the depth test by
Z buffer is first disabled and the blending (GL BLEND) is then en-
abled. Moreover, the blend function is set to “the weighted sum by
an input alpha value”3.

Finally, two outputs (∑M
j ω jp j, ∑M

j ω j), (∑M
j ω j∇ f j(p j), ∑M

j ω j)
of a fragment program are set. These can be stored to textures
separately by using multiple draw buffer (GL ARB draw buffers)
which is one of the functionalities of recent GPUs.

3rd pass: Computing p̃, ñ and shading. In the third pass,
a rectangular polygon which has the same resolution as a frame
buffer (or a floating point texture Ωp, Ωn) is drawn. A pixel coor-
dinate of a fragment can be then acquired by rasterization. Using
this pixel coordinate, a pair of four pixel values (∑M

j ω jp j, ∑M
j ω j),

(∑M
j ω j∇ f j(p j), ∑M

j ω j) are fetched from floating point textures
Ωp, Ωn respectively. A position p̃ and a normal vector ñ of an
implicit surface are now computed by dividing the first three ele-
ments of pixel values by a fourth element. Finally, a shading color
is computed using p̃, ñ to generate a final image.

3.4 LOD Rendering and View Frustum Culling

A SLIM surface has a hierarchical tree structure of nodes including
implicit polynomials. Based on a tree structure, LOD (Level-Of-
Detail) rendering and view frustum culling can be performed effi-
ciently using support spheres of nodes. In LOD rendering, child
tree nodes are traversed from a root node. For a node, if the radius
of a support sphere in screen space is less than a threshold (a few
pixels here), its parent node is rendered. In view frustum culling,
the basic process is the same. The only difference is that the in-
side/outside test of a node to a view frustum is performed instead.

Figure 8 shows the comparison of resulting images between the
rendering of only leaf nodes (left) and LOD rendering (right) of
a “david” model. It can be seen that almost no visual difference
appears while the number of nodes in LOD rendering is approxi-
mately one-ninth of that in the rendering of leaf nodes.

4 Results and Discussion

Figure 9 shows the rendering results of example models used in the
measurement of computational time. In our approach, high qual-
ity rendering is achieved because fragment-based computations of
positions and normal vectors are performed. Note that in our ap-
proach, the blending operation is executed on a 16-bit pixel buffer
due to the limitation of GPU hardware. However, it can be said that
such a limitation does not lead to any visual defects.

3This is done by setting glBlendFunc(GL SRC ALPHA, GL ONE).

Figure 8: Control of nodes in LOD rendering of “david” model.
Left: leaf nodes (932,720 nodes). Right: LOD nodes (126,466
nodes).

Table 1 shows the statistical summary of measured computation
times for the models described in this paper. In this table, the com-
putational times measured on CPUs are from the software imple-
mented in [Ohtake et al. 2005]. Note that [Ohtake et al. 2005] pro-
poses a rendering method applying orthogonal projection for sim-
plifying computation compared to our approach.

It can be seen from the table that the computation time in our ap-
proach on GPUs is roughly three to seven times faster than the ren-
dering by CPUs. The rendering speed is more effective especially
for models with a small number of nodes. This is due to the effect
of parallelization by GPUs. Since our approach is based on a ray
casting method, the large number of fragments filling the screen
yields considerably more computation time. This can be verified
by comparing the results of “moai” and “dino”. The rendering time
of “moai” is twice faster than that of “dino”, while the number of
nodes in “moai” is less than that of “dino”. This is because the filled
fragments of “moai” are much larger than those of “dino”.

On the other hand, the speed up of rendering is not so much of a
focus in our approach for large models, especially for “lucy” and
“david”. In these models, the obstacle lies in the process to transfer
nodes (billboards) from a CPU to a GPU. In this case, it is much
more effective to reduce the nodes themselves to be transferred. In
fact, it have been confirmed that the rendering speed is twice to
three times faster using the LOD technique.

5 Conclusions and Future Work

In this paper, a fast rendering method for SLIM surfaces, which
is a type of point-based implicit surface, has been proposed. Our

Figure 9: Rendering results of models used for the measurement of the computational time. From upper left: dino, armadillo, lucy. From
bottom left: feline, xyzrgb dragon. A magnified view of lucy’s head is shown in a frame of right figure.

model #total nodes #leaf nodes CPU (fps) GPU (fps) GPU (LOD) (fps) #LOD nodes
moai 6,948 5,421 2.91 21.53 - -
dino 7,783 6,009 7.09 44.92 - -
feline 20,891 16,175 4.00 23.79 - -

armadillo 31,712 24,662 4.27 22.97 - -
xyzrgb dragon 242,018 185,050 2.79 12.86 - -

lucy 915,151 691,978 1.12 3.50 6.45 130,696
david 1,221,100 932,720 0.93 2.63 7.08 126,466

Table 1: Statistical summary of computation times. From left to right: model name, number of all nodes, number of leaf nodes, computation
time by CPUs (fps), computation time of leaf nodes by GPUs (fps), computation time of LOD nodes (fps), the number of LOD nodes. A
window size is 512 × 512 for all tests. These are measured on a PC with Pentium D 840 (3.2GHz) CPU and nVIDIA GeForce 7900 GTX
GPU.

approach achieves high quality rendering by computing the position
and normal vector for a fragment by implementing a ray-based PU.
We have demonstrated that computation time is roughly three to
seven times faster compared to CPU-based rendering, and roughly
twice to three times faster for large models.

Two future directions are mainly considered. One is an extension of
our approach to address sharp features such as creases and corners.
In SLIM surfaces, sharp features are treated by special processes in-
cluding Boolean operations. We should consider how to implement
such Boolean operations on GPUs. The other is the direct render-
ing of other implicit surface representations such as metaballs and
blobby models. However, we think that these representations can
be rendered by using our rendering framework on GPUs.

Acknowledgements

The models used in this paper are courtesy of California Institute
of Technology (feline), the Stanford 3D Scanning Repository (ar-
madillo, xyzrgb dragon, lucy, david), Aizu University (moai), and

Cyberware Inc. (dino).

References

ADAMS, B., KEISER, R., PAULY, M., GUIBAS, L. J., GROSS,
M., AND DUTRÉ, P. 2005. Efficient raytracing of deforming
point-sampled surfaces. Computer Graphics Forum (Proc. Eu-
rographics 2005) 24, 3, 677–684.

ADAMSON, A., AND ALEXA, M. 2003. Ray tracing point set
surfaces. In Proc. Shape Modeling International 2003, IEEE CS
Press, Los Alamitos CA, 272–282.

BOTSCH, M., AND KOBBELT, L. P. 2003. High-quality point-
based rendering on modern GPUs. In Proc. 11th Pacific Confer-
ence on Computer Graphics and Applications, 335–343.

BOTSCH, M., SPERNAT, M., AND KOBBELT, L. P. 2004. Phong
splatting. In Proc. Symposium on Point-Based Graphics 2004,
Eurographics Association, 25–32.

BOTSCH, M., HORNUNG, A., ZWICKER, M., AND KOBBELT, L.
2005. High-quality surface splatting on today’s GPUs. In Proc.
2nd Eurographics Symposium on Point-Based Graphics, Euro-
graphics Association, Aire-la-Ville, Switzerland, 17–24.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL,
T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R.
2001. Reconstruction and representation of 3D objects with ra-
dial basis functions. In Computer Graphics (Proc. SIGGRAPH
2001), ACM Press, New York, 67–76.

DE GROOT, E., AND WYVILL, B. 2005. Rayskip: Faster ray
tracing of implicit surface animations. In Proc. 3rd International
Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia (GRAPHITE ’05), ACM Press,
New York, 31–36.

ENGEL, K., KRAUS, M., AND ERTL, T. 2001. High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. In Proc. ACM SIGGRAPH / EUROGRAPHICS Work-
shop on Graphics Hardware, ACM Press, New York, 9–16.

GUMHOLD, S. 2003. Splatting illuminated ellipsoids with depth
correction. In Proc. Vision, Modeling, and Visualization Confer-
ence (VMV), 245–252.

HADWIGER, M., SIGG, C., SCHARSACH, H., BÜHLER, K., AND
GROSS, M. 2005. Real-time ray-casting and advanced shading
of discrete isosurfaces. Computer Graphics Forum (Proc. Euro-
graphics 2005) 24, 3, 303–312.

KRUGER, J., AND WESTERMANN, R. 2003. Acceleration tech-
niques for GPU-based volume rendering. In Proc. IEEE Visual-
ization 2003, IEEE CS Press, Los Alamitos CA, 287–292.

LOOP, C., AND BLINN, J. 2006. Real-time GPU rendering of
piecewise algebraic surfaces. ACM Transactions on Graphics
(Proc. SIGGRAPH 2006) 25, 3, 664–670.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A
high resolution 3D surface construction algorithm. In Computer
Graphics (Proc. SIGGRAPH ’87), ACM Press, New York, 163–
169.

MURAKI, S. 1991. Volumetric shape description of range data
using blobby model. In Computer Graphics (Proc. SIGGRAPH
’91), ACM Press, New York, 227–235.

NISHIMURA, H., HIRAI, M., KAWAI, T., KAWATA, T., SHI-
RAKAWA, I., AND OMURA, K. 1985. Object modeling by distri-
bution function and a method of image generation. Trans. IEICE
J68-D, 4, 718–725. (in Japanese).

NISHITA, T., AND NAKAMAE, E. 1994. A method for displaying
metaballs by using bezier clipping. Computer Graphics Forum
(Proc. Eurographics ’94) 13, 3, 271–280.

OHTAKE, Y., BELYAEV, A. G., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-level partition of unity implicits. ACM
Transactions on Graphics (Proc. SIGGRAPH 2003) 22, 3, 463–
470.

OHTAKE, Y., BELYAEV, A. G., AND ALEXA, M. 2005. Sparse
low-degree implicits with applications to high quality rendering,
feature extraction, and smoothing. In Proc. 3rd Eurographics
Symposium on Geometry Processing, Eurographics Association,
Aire-la-Ville, Switzerland, 149–158.

SAVCHENKO, V. V., PASKO, A. A., OKUNEV, O. G., AND KU-
NII, T. L. 1995. Function representation of solids reconstructed
from scattered surface points and contours. Computer Graphics
Forum 14, 4, 181–188.

SIGG, C., WEYRICH, T., BOTSCH, M., AND GROSS, M. 2006.
GPU-based ray-casting of quadratic surfaces. In Proc. 3rd Eu-
rographics Symposium on Point-Based Graphics, Eurographics
Association, Aire-la-Ville, Switzerland, 59–65.

TEJADA, E., GOIS, J. P., NONATO, L. G., CASTELO, A., AND
ERTL, T. 2006. Hardware-accelerated extraction and render-
ing of point set surfaces. In Proc. Eurographics / IEEE VGTC
Symposium on Visualization, Eurographics Association, Aire-la-
Ville, Switzerland, 21–28.

WALD, I., AND SEIDEL, H.-P. 2005. Interactive ray tracing of
point-based models. In Proc. 2nd Eurographics Symposium on
Point-Based Graphics, Eurographics Association, Aire-la-Ville,
Switzerland, 1–8.

WESTERMANN, R., AND SEVENICH, B. 2001. Accelerated vol-
ume ray-casting using texture mapping. In Proc. IEEE Visual-
ization 2001, IEEE CS Press, Los Alamitos CA, 271–278.

WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data
structure for soft objects. The Visual Computer 2, 4, 227–234.

ZWICKER, M., RASANEN, J., BOTSCH, M., DACHSBACHER, C.,
AND PAULY, M. 2004. Perspective accurate splatting. In
Proc. Graphics Interface 2004, Morgan Kaufmann Publishers,
San Francisco, CA, 247–254.

