
Copyright © 2005 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2005 ACM 1-59593-201-1/05/0010 $5.00

Parametric Curves on Meshes

Takashi Kanai

RIKEN

Abstract

In this paper, we propose a method for creating parametric curves
on triangular meshes. A curve on a mesh is frequently used as a
boundary curve of a specific region of a mesh in mesh modeling and
applications such as texture mapping, remeshing or morphing. Al-
though the curve defined in this paper is a piecewise linear approxi-
mation of a strict parametric curve, it is guaranteed that such a curve
is just on a mesh. The basic idea is creating a curve on a spherical
parameterization instead of direct definition on a mesh. The com-
putation of this curve is done by using only the control points on
a spherical parameterization which does not depend on the number
of vertices in a mesh. This enables interactive creation/modification
of curves even for dense meshes.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, Surface, Solid, and
Object Representations; I.3.5 [Computer Graphics]: Graphics
Utilities—Graphics Editors

Keywords: Geometric modeling, Triangular mesh, Parametric
curve, Quaternion curve, Spherical parameterization.

1 Introduction

Unstructured triangular meshes (hereafter referred to as meshes) are
the most standard representation of surface geometry in Computer
Graphics (CG) applications due to their simplicity and flexibility.
Recent progress of shape measurement machines such as range
scanners facilitates the acquisition of dense range data. Mesh re-
construction from such range data is still an active research area.
Furthermore, there is a much greater need for the re-use of such
reconstructed meshes in the applications of three-dimensional CG,
CAD/CAM, etc.

Now let us consider defining a curve on such an unstructured mesh.
A curve on a mesh is frequently used as the boundary curve in appli-
cations such as texture mapping, remeshing and morphing. In these
applications, a curve which is strictly represented by mathematical
representation is not required. Instead, the visual smoothness of a
curve and the interactivity which can be freely created or modified
by users would really be needed.

In this paper, we propose a novel method of interactive curve cre-
ation and modification as a parametric curve on a mesh. In past
researches on curve definition, the approach of Krishnamurthy and
Levoy [Krishnamurthy and Levoy 1996] can be cited first. In [Kr-
ishnamurthy and Levoy 1996], a sampling method of dense point
sets on a mesh based on B-spline curve interpolation is described.

However, only point samples are generated on a mesh, and the de-
fined curve is not strictly on a mesh. In the work of Kanai and
Suzuki [Kanai and Suzuki 2001], they propose an approach to de-
fine an approximate straight line between two points on a mesh.
This approach is based on using selective refinement strategy of
Dijkstra’s algorithm for the graph structure of a mesh. Unfortu-
nately, a global search of mesh edges (some of them may be subdi-
vided) is required. Furthermore, a dense subdivision of a graph to
generate a higher accurate path is needed and, in this case, compu-
tation takes time.

On the other hand, a simple approach conceivable by anyone is the
“projection”-based scheme. In this approach, a spatial curve (e.g.
B-spline curve) is interpolated from point sets and is projected onto
a mesh. However, there is a need to decide the direction on which
a curve is projected. If points sampled from a curve project to the
corresponding nearest points on a mesh, the nearest point search
will be required. Such findings typically require an additional data
structure (e.g. spatial data structure such as octree) which will how-
ever make computation costly. Since our objective here is to cre-
ate a curve interactively, operations with high computational costs
are to be avoided. If all point samples are projected in the same
direction, projections could fail as in the case of mesh geometry
(especially highly convex/concave regions).

The basic idea of our approach is to define a curve in the paramet-
ric space generated from a mesh, not on a mesh itself. A curve
defined on a parametric space is just a parametric curve based on
strict mathematical formula, thus its controllability can be main-
tained. Our approach uses only points on a mesh corresponding to
control vertices to evaluate a curve. Therefore the computation is
local and does not depend on the number of mesh vertices. These
two characteristics enable an interactive creation and modification
of curves on a mesh. To prove this advantage, we also describe
two applications, curve editing and mesh decomposition in the later
section.

This paper is organized as follows: Section 2 gives an overview of
our curve generation procedure, and Section 3 explains the details
of our algorithm with related work. Section 4 discusses applica-
tions of parametric curves on meshes and Section 5 provides the
conclusions of this paper.

2 Overview of Our Basic Procedure

Figure 1 shows an overview of our basic procedure for curve gen-
eration. The input is a genus zero mesh with arbitrary connectivity
and the output is a curve drawn on a mesh. The procedure is de-
scribed as follows:

1. For a mesh M, we apply spherical parameterization φ : M 7→
P [Kanai 2004] and store each parameter p ∈ P to a vertex
of a mesh v ∈ M. This computation is done only once as a
pre-process.

2. After specifying several points on a mesh, we compute a
quaternion curve L(t) using corresponding points on a sphere.

3. L(t) is projected onto a spherical embedding to compute a
piecewise linear approximation pi ∈ P(i = 1 . . .n). Each ver-

413

Spherical Parameterization

B-spline

Quaternion Curve

Projection & Inverse Mapping

Figure 1: Overview of our basic procedure for curve generation.

tex of a linear approximation on a mesh vi ∈ M is computed
by an inverse mapping φ−1.

We apply the spherical parameterization method, which unfortu-
nately could limit objects which can be handled to genus zero
meshes.

A curve on a mesh is just a piecewise linear approximation because
a mesh itself is defined as a piecewise linear surface. It is indeed
impossible to define a curve as mathematical expression. However,
a line segment pi pi+1, which is converted from a part of a curve, is
just on M.

In the case of multiple curves, the above steps 2 and 3 are repeated.

3 Algorithm Details

In this section, we will describe the details of two specific tech-
niques; quaternion curve and conversion from a curve to linear ap-
proximation, used in our basic curve generation procedure.

3.1 Quaternion Curve

Quaternion curve is a classical tool for the control of orientations
in the fields of computer animation and robotics. In past years,
various quaternion curve methods have been proposed ([Shoemake
1985; Kim et al. 1995b; Ramamoorthi and Barr 1997; Miura 2000;
Buss and Fillmore 2001] and so on). We offer an alternative usage
of these quaternion curves.

We use here a unit B-spline quaternion curve proposed by Kim et
al. [Kim et al. 1995b]. There are several reasons that we adopt Kim
et al.’s approach; a smoothly-connected composite curve is easy to
create, the computation only depends on the number of control ver-
tices, and the algebraic and the differential property of a planar B-
spline curve can be inherited. Moreover, a unit B-spline quaternion
curve is formulated with arbitrary number of control vertices as a

planar B-spline curve; therefore there is a lot of flexibility for de-
signing a curve. Our purpose here is to create a visually-smooth and
controllable curve. Consequently, Kim et al.’s approach is much
suitable in our case.

A point on a quaternion curve q(t) is calculated using the following
formula:

q(t) = q0

n

∏
i=1

exp(wiB̃i,k(t)), wi = log(q−1
i−1qi), (1)

where qi denotes a control point as the form of quaternion, exp and
log denote an exponential map and a logarithmic map of quaternion
respectively. B̃i,k(t) means the cumulative form of the B-spline ba-
sis function B j,k(t):

B̃i,k(t) =
n

∑
j=i

B j,k(t).

One issue should be considered when creating unit B-spline quater-
nion curves on the sphere. A unit quaternion q = (cosθ ,sinθ ·
(a,b,c)) ∈ S3 is by nature composed of a direction (a,b,c) and
a rotation θ . However, as pointed out in [Miura 2000], a curve
generation problem on the sphere is nothing less than to define an
orientation (= direction + rotation) from a given parameter. Con-
sequently, a point on the sphere corresponds to an infinite number
of unit quaternion. When applying the above issue to our case, we
have to determine the rotation term when converting a unit quater-
nion from a point on the sphere. Our simple solution for this issue
is to set cosθ = 0, sinθ = 1 for all conversions to unit quaternion.

3.2 Projection and Inverse Mapping

A unit B-spline quaternion curve described in the previous subsec-
tion is not just on a spherical embedding. Here we project a curve
on a spherical embedding to create a piecewise linear approxima-
tion. A piecewise linear approximation is represented as a poly-line
on a mesh: l = {p1, p2, . . . , pn}. A vertex of such a poly-line is de-
fined by a vertex of a mesh or a point on an edge of a mesh.

The projection algorithm is as follows:

Algorithm 1 Curve projection algorithm

Input Spherical embedding P and a quaternion curve q(t)
Output A poly-line l = {p1, p2, . . . , pn} on P

t = 0; pi = q(t);
while (pi 6= q(t = 1))

xi−1 = pi;
while (fi−1 == fi)

t = t +∆t;
Compute a nearest point xi ∈ P to qi = q(t) and its
corresponding face fi; . . . (1)
if (xi == nil) ∆t = ∆t ∗0.1; // Make ∆t smaller

end
Compute an intersection point pi between a neighboring
edge e of fi, fi−1 and line segment xixi−1;
. . . (2)

end

end

The algorithm starts at t = 0. t is incrementally updated to t + ∆t
by an interval ∆t in each step. We then compute a point on the

414

(a) (b)

Figure 2: (a) B-spline quaternion curve on sphere. (b) Piecewise
linear approximation projected on spherical embedding.

curve q(t) and project it to a face to compute the nearest point xi

and its corresponding face fi ((1) in Algorithm 1). In the nearest
point search, xi is calculated by an intersection between a face and
its perpendicular line extending to qi. We only have to search a face
fi and its three neighbor faces which can be quickly accessed by
preparing the appropriate data structure such as half-edge.

If corresponding faces fi−1, fi of two consecutive nearest points
xi−i and xi are different, an intersection point pi between a com-
mon edge e of fi−1, fi and a line segment xixi−1 is computed ((2)
in Algorithm 1). In the intersection point calculation, either face of
fi, fi−1 is rotated so that both faces are co-planar to define a line
segment xixi−1. The above two processes are repeated until t = 1.

In the curve projection algorithm, we should take care how to set
an interval ∆t. If we set ∆t to an excessively large value, we cannot
find the nearest point described in (1) in Algorithm 1. Also, if we
set ∆t to an excessively small value, it takes longer time to compute
a piecewise approximation. Here we adopt the following strategy
for setting ∆t from several experiments: We determine an initial
value of ∆t by 10% for an average length of all the edges of a mesh.
In the algorithm, we make ∆t smaller by tithe unless a nearest point
can be found.

Figure 2 illustrates a unit B-spline quaternion curve on a sphere
and a piecewise linear approximation projected on a spherical em-
bedding. The calculation of the inverse mapping is quite simple
because of the correspondence between a mesh M and its spherical
embedding P: When computing an intersection point on P ((1) in
Algorithm 1), a corresponding point on M can also be computed.

4 Applications

In this section, we will discuss the following two applications of
curve generation, curve editing and mesh decomposition.

4.1 Curve Editing

Our curve editing tool can not only create curves but also trans-
late or rotate them freely on a mesh with interactive speed. Fig-
ure 3 shows the examples of interactively rotating and translating
character-shaped curves on a mesh.

There are different area ratios of faces of a mesh for faces of a
spherical embedding depending on regions of a mesh. In curve
editing, this issue causes a scaling problem. For example, when
a curve passes a region in which the area of faces on a spherical

(a) (b)

(c) (d)

Figure 3: Curve editing examples on “Armadillo” mesh (172,974
vertices, courtesy of Stanford University). (a) Characters “TAR”
on back. (b) 90◦-Rotation. (c) Translation to arm without scaling.
(d)Translation with scaling.

embedding is relatively small (e.g. a region of the arm), a curve
becomes large as shown in Figure 3(c).

To overcome such a scaling problem, we adjust the size of a curve
depending on its position: Firstly, an area ratio coefficient γ =
√

area(fP)/area(fM) is computed for each face in advance. An
average of such coefficients for faces through which a curve (or a
group of curves) passes is computed to adjust its scale. Figure 3(d)
shows the results of adjusting such a scale. In this case, a curve on a
spherical embedding also becomes relatively smaller. The charac-
ters “TAR” as shown in Figure 3 is composed of seven curves. Each
curve has from four to nine control points. The computation time
for drawing such curves mainly depends on the curve projection
algorithm as described in Section 3.2. However, the computation
time for drawing all seven curves is less than 1.0 ×10−4 seconds
(measured on Pentium 4 2.4GHz PC), which may realize the estab-
lishment of an interactive operation. On the other hand, the compu-
tation time for spherical parameterization is roughly ten minutes for
the model in Figure 3. This computation is done only once as a pre-
process, and thus does not affect the interactive editing of curves.
With our editing tool, an interactive displacement mapping could
also be possible by selective refinement in a region centering on a
curve.

4.2 Mesh Decomposition

Mesh decomposition into patches is an important technique, espe-
cially in the application of 3D morphing [Gregory et al. 1999; Lee
et al. 1999; Kanai et al. 2000; Michikawa et al. 2001; Praun et al.
2001]. In applications to 3D morphing, a smooth boundary curve
between patches is usually required for a visually-acceptable in-
terpolation of two meshes. On the one hand, several automatic
decomposition methods have been proposed [Katz and Tal 2003;
Boier-Martin 2003]. In contrast, our decomposition approach is

415

Figure 4: Various mesh decomposition results for “tiger’s head”
mesh (4,034 vertices). The number of parametric curves for de-
composition is 22, 26, and 12 respectively (from left to right).

manual-based. We think that our manual decomposition approach
has both advantages and disadvantages. The advantage is that we
can edit boundary curves which are really needed. Our approach
can be implemented with high interactive speed even when accom-
panied with try-and-error operations. The disadvantage is that con-
siderable work is needed for users because it is a completely man-
ual operation. However, a semi-automatic approach which com-
bines our approach with automatic decompositions should be pos-
sible. For example, an automatic decomposition approach can be
first used, followed by the detailed manual modification of only a
part of boundary curves. Figure 4 shows the results of demonstrat-
ing several different decompositions for a mesh. It is difficult to
modify boundary curves freely as shown in these figures by the au-
tomatic approach. Our approach can also extract some regions by
specifying several curves.

5 Conclusions and Future Work

In this paper, we have proposed a curve on a mesh utilizing spher-
ical parameterization. Our approach can create a visually-smooth
and controllable curves on a mesh with interactive speed. We have
also shown from two practical applications that our system has the
potential to be a powerful curve generation/editing tool on a mesh.

Two directions should be considered in future work. The first is the
improvement of our approach. Currently, there are two sub-themes
for this. One is the process for meshes with genus greater than
zero. For this sub-theme, the use of texture atlas may be possible as
noted in Section 2. However, it brings about the question of how to
maintain continuity when a curve crosses over a boundary of two
patches.

The other sub-theme is the generation of an interpolation curve
which passes point sets. This seems to be possible by using an
interpolative quaternion curve on the sphere [Kim et al. 1995a].

The other direction is developing a user interface for curve editing.
We are especially interested in utilizing a tablet interface.

References

BOIER-MARTIN, I. M. 2003. Domain decomposition for mul-
tiresolution analysis. In Proc. 1st Eurographics Symposium on
Geometry Processing, Eurographics Association, Aire-la-Ville,
Switzerland, 29–40.

BUSS, S. R., AND FILLMORE, J. P. 2001. Spherical averages and
applications to spherical splines and interpolation. ACM Trans-
actions on Graphics 20, 2, 95–126.

GREGORY, A., STATE, A., LIN, M., MANOCHA, D., AND LIV-
INGSTON, M. 1999. Interactive surface decomposition for poly-
hedral morphing. The Visual Computer 15, 9, 453–470.

KANAI, T., AND SUZUKI, H. 2001. Approximate shortest path
on a polyhedral surface and its applications. Computer Aided
Design 33, 11 (September), 801–811.

KANAI, T., SUZUKI, H., AND KIMURA, F. 2000. Metamorphosis
of arbitrary triangular meshes. IEEE Computer Graphics and
Applications 20, 2 (April), 62–75.

KANAI, T. 2004. Hierarchical computation of conformal spherical
embeddings. In 6th International Conference on Mathematical
Methods for Curves and Surfaces.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition
using fuzzy clustering and cuts. ACM Transactions on Graphics
(Proc. SIGGRAPH 2003) 22, 3 (July), 954–961.

KIM, M.-J., KIM, M.-S., AND SHIN, S. Y. 1995. A C2-continous
B-spline quaternion curve interpolating a given sequence of solid
orientations. In Proc. Computer Animation ’95, IEEE CS Press,
Los Alamitos CA, 72–81.

KIM, M.-J., KIM, M.-S., AND SHIN, S. Y. 1995. A general
construction scheme for unit quaternion curves with simple high
order derivatives. In Computer Graphics (Proc. SIGGRAPH 95),
ACM Press, New York, 369–376.

KRISHNAMURTHY, V., AND LEVOY, M. 1996. Fitting smooth
surfaces to dense polygon meshes. In Computer Graphics (Proc.
SIGGRAPH 96), ACM Press, New York, 313–324.

LEE, A. W. F., DOBKIN, D., SWELDENS, W., AND SCHRÖDER,
P. 1999. Multiresolution mesh morphing. In Computer Graphics
(Proc. SIGGRAPH 99), ACM Press, New York, 343–350.

MICHIKAWA, T., KANAI, T., FUJITA, M., AND CHIYOKURA, H.
2001. Multiresolution interpolation meshes. In Proc. 9th Pa-
cific Conference on Computer Graphics and Applications (Pa-
cific Graphics), IEEE CS Press, Los Alamitos CA, 60–69.

MIURA, K. T. 2000. Unit quaternion integral curve: A new type
of fair free-form curves. Computer Aided Geometric Design 17,
1, 39–58.

PRAUN, E., SWELDENS, W., AND SCHRÖDER, P. 2001. Con-
sistent mesh parameterizations. In Computer Graphics (Proc.
SIGGRAPH 2001), ACM Press, New York, 179–184.

RAMAMOORTHI, R., AND BARR, A. H. 1997. Fast construction of
accurate quaternion splines. In Computer Graphics (Proc. ACM
SIGGRAPH ’97), ACM Press, New York, 287–292.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
In Computer Graphics (Proc. SIGGRAPH 85), ACM Press, New
York, 245–254.

416

