
Approximate Shortest Path on a Polyhedral Surface Based on Selective
Refinement of the Discrete Graph and Its Applications

Takashi Kanai
RIKEN

Materials Fabrication Lab.
.

Hiromasa Suzuki
University of Tokyo

Dept. Precision Engineering
.

Abstract

A new algorithm is proposed for calculating the approx-
imate shortest path on a polyhedral surface. The method
mainly uses Dijkstra’s algorithm and is based on selective
refinement of the discrete graph of a polyhedron. Although
the algorithm is an approximation, it has the significant
advantages of being fast, easy to implement, high approx-
imation accuracy, and numerically robust. The approxi-
mation accuracy and computation time are compared be-
tween this approximation algorithm and the extended Chen
& Han (ECH) algorithm that can calculate the exact short-
est path for non-convex polyhedra. The approximation al-
gorithm can calculate shortest paths within 0.4% accuracy
to roughly 100-1000 times faster than the ECH algorithm
in our examples. Two applications are discussed of the ap-
proximation algorithm to geometric modeling.

Keywords: geometric modeling, computational geometry,
polyhedral surface, shortest path, Dijkstra’s algorithm

1. Introduction

Polyhedral surfaces, especially meshes that consist of
planar triangle faces, are the fundamental geometric rep-
resentation in computer graphics and related areas. Those
surfaces with a large number of faces (called dense) can
now be generated more easily due to the recent development
of range scanners, GPS, and so on. For example, surface
reconstruction from range images [3] and the use of such
dense polyhedral surfaces have been active research topics
for computer graphics applications. Geographic informa-
tion systems (GIS) usually use triangular irregular networks
(TINs) which are polyhedral representations of geographi-
cal features.

Finding the shortest path on such polyhedral surfaces
is a fundamental problem in computational geometry, and

becomes an important technique for the application of
robotics, GIS, route finding, and so on. The purpose of
this paper is to establish an efficient algorithm for calcu-
lating shortest paths and to use them for geometric model-
ing. There are many algorithms for finding the shortest path
on 2D polygons and 3D surfaces, and in 3D spaces. How-
ever, the algorithms for finding the exact shortest path on a
polyhedral surface (including the non-convex case) [17, 2]
usually involve high time and space costs. It is therefore
not practical to apply these algorithms to a dense polyhe-
dral surface in most cases.

Instead, we have focused on finding the approximate
shortest path [11, 15]. The algorithm proposed in this paper
for a polyhedral surface (possibly including the non-convex
case) mainly uses Dijkstra’s algorithm and is based on se-
lective refinement of the discrete graph of a polyhedron.
That is, Dijkstra’s algorithm is iteratively used to narrow
the region in which the shortest path can exist. Our algo-
rithm has some significant advantages: it is fast and easy to
implement, it has high accuracy, and needs less space cost
to get an actual path. To show some features of our algo-
rithm, we compare the approximation accuracy and compu-
tation time between our algorithm and the Chen and Han
(CH) algorithm. The CH algorithm is the fastest one for
finding the exact shortest path. Unfortunately, it sometimes
fails to compute for a non-convex polyhedron. In this work,
we extend the CH algorithm so that it can be used for more
general cases.

We also discuss applications of our algorithm to geomet-
ric modeling. It is to be noted that our algorithm can only
find the approximate shortest path, so it is not suitable for
applications which absolutely need the exact path (or only
its length). We show two examples of our algorithm being
efficiently used for modeling: One involves specification of
the boundaries of a region on a polyhedral surface. It is not
necessary for such boundaries to be exact paths, but they
do need to be smooth and to be calculated rapidly and effi-
ciently. The other involves the interactive length measure-
ment of a geodesic curve on a 3D model in a case that also

does not need to be exact.

2. Shortest Path Problem on a Polyhedral Sur-
face

A survey of the shortest path problem concerning a two
or higher dimensional geometric object (a surface, space,
network, etc.) can be found in [16]. We mainly discuss
here about finding the shortest path between two points on
a polyhedral surface.

An important property of the shortest path on a poly-
hedron is its local optimality called unfolding: the path
must enter and leave at the same angle to the intersecting
edge. It follows that any locally optimal sub-path joining
two consecutive obstacle vertices can be unfolded at each
edge along its edge sequence, thus obtaining a straight seg-
ment. This property was used by Sharir and Schorr [19]
who first proposed an O(n3 log n)-time algorithm (n is the
number of edges) to find the exact shortest path on a convex
surface. Mitchell et al. [17] have obtained an O(n2 log n)-
time algorithm for general polyhedra by developing a con-
tinuous Dijkstra method for propagating the shortest path
map over a surface. While Chen and Han [2] subsequently
improved this to an O(n2)-time algorithm, faster algorithms
than these cannot presently be found.

On the other hand, some other work has been done on
the approximate shortest path. This has involved less com-
putation times than the exact approaches, but it is a trade-
off with the path accuracy. In general, the term (1 + ε)-
approx. is usually used for evaluating the computation
time for these approximate approaches, meaning that a cal-
culated approximate path guarantees the accuracy within
(1+ε) times longer than the exact path. In this evaluation,
smaller ε results in better accuracy.

Algorithms theoretically exist that are fast and require
less space if limited to convex polyhedra. For example, the
approach proposed by Har-Peled [6] is based on the con-
struction of a tight bounding volume covering a polyhedron.
By performing O(n) pre-processing, the O((log n)/ε3/2 +
1/ε3)-time computation of a (1 + ε)-approx. shortest path
is possible. In the case of general polyhedra, Varadarajan
and Agarwal [21] have proposed algorithms that compute a
13-approx. (ε =12) path in O(n5/3 log5/3 n)-time or a 15-
approx. (ε =14) path in O(n8/5 log8/5 n)-time. These are
based on partitioning the surface into O(n/r) patches, each
having at most r faces. However, no approximations with
high accuracy can be obtained by these approaches.

Some practical methods for finding the approximate
shortest path based on subdivided discrete graph searching
have recently been proposed. The algorithm described in
this paper is of this type. The common characteristic of
these approaches (including ours) is to create a certain graph

(called an edge subdivision graph or a pathnet) which is
needed for path computation as a pre-processing step.

The O(n log n)-time approach by Lanthier et al. [11]
first adds some intermediate points to edges, and discrete
graph G is created by using these points and the original
vertices. Then Dijkstra’s algorithm is applied to G. After
picking up the faces under the calculated shortest path of G
(called the sleeve), the O(log k) algorithm (k is the number
of edges passed by the shortest path) proposed by Guibas
and Hershberger [5] is used to refine the graph. How-
ever, [5] uses a rather special data structure called the hour-
glass, and its algorithm is difficult to implement. Mata and
Mitchell [15] have proposed another approach called the
pathnet algorithm which is applied with, at worst, O(kn3)-
time (where k is the number of rays for each vertex). One
practical aspect of this algorithm is the robustness of the
computation. This algorithm is sensitive to numerical er-
rors because it requires solving a fourth-degree polynomial.
An another aspect is the path accuracy, a large number of k
being required to obtain an approximate shortest path close
to the exact solution.

The algorithm described in this paper is similar to the
algorithm of Lanthier et al. [11]. The major difference is
that our algorithm is iterative: the shortest path is calculated
by selective refinement of the subdivided discrete graph of
a polyhedral surface.

3. Approximate Shortest Path Computation

A polyhedral surface is a connected union of a finite
number of polygonal faces, with any two polygons inter-
secting along a common edge, at a common vertex, or not
at all, and each edge belonging exactly to a polygon. Given
polyhedral surface M, shortest path L from source vertex
VS to destination vertex VD onM is defined by:

L = {v1, v2, . . . , vn, e1, e2, . . . , en−1}, (1)

VS = v1, VD = vn, ei = {vi, vi+1},

where vi and ei denote a point and an edge on a face ofM,
respectively.

Let l = |L| be the length of shortest path L. Then:

l = |L| = |e1|+ |e2|+ . . . + |en−1|, (2)

where |ei| is the Euclid distance between two connected
vertices vi and vi+1 of edge ei.

3.1. Pre-processing for path calculation

Pre-processing involves creating initial discrete graph
G0(v, e) fromM. G0(v, e) is composed of vertices / edges
ofM and additional vertices / edges.

ORIGINAL

ONFACE

f

Figure 1. Edge classifications

We define here some classifications to edges on M to
judge whether an edge should be added or not during the
process of the algorithm: ORIGINAL refers to the original
edges or their subdivided edges ofM, and ONFACE refers
to the others, as shown in Figure 1.

G0 is next created. First, the vertices and edges ofM are
added to G0. Then additional vertices are sampled on each
edge ofM. These are called Steiner Points (SPs). The num-
ber of added SPs on each edge are decided by its length and
parameter γ. Let |e| be the length of edge e. Then the num-
ber of SPs on e is decided as (|e|mod γ)−1 so that smaller
γ creates more SPs. Note that γ is a size-dependent value.
To be independent of the size ofM,M is scaled into a unit
cube in advance so that the edge length is normalized. γ is
a user-defined value that decides the trade-off between the
approximation accuracy and the computing time and space.

Intermediate edges are created in G0 by using the origi-
nal and additional vertices. If pair of vertices 〈va, vb〉 ∈ G0

satisfies either 1. or 2. in Condition 1 bellow, edge
e = {va, vb} is added to G0:

Condition 1

1. 〈va, vb〉 is a pair of vertices in G that are
on different edges of a face.

2. 〈va, vb〉 is a pair of vertices in G that are
next to each other on the same edge.

Figure 2(b) illustrates a part of initial discrete graph G0

(2,859 vertices, 16,055 edges) of the “bunny” model (525
vertices, 999 edges) shown in Figure 2(a). In Figure 2(b),
thin lines denote additional edges. We have set γ to 0.04 in
this example, the average number of SPs per edge is 1.52.

3.2. Approximate Shortest Path Algorithm

By using G0, shortest path L between VS and VD is cal-
culated by the following algorithm. Our algorithm repeats
STEP 1 - STEP 4, incrementing loop counter i from 0 by 1
each time.

(a) (b)

Figure 2. Initial discrete graph G0

STEP 1: Calculate shortest path on Gi

Shortest path Li for discrete graph Gi and its
length li are calculated by using Dijkstra’s al-
gorithm. The shortest path is composed of ver-
tices and edges in Gi.

STEP 2: Generate new graph Gi+1 from
path Li

Shortest path Li is traced and its component
vertices are added to Gi+1. Other connected
vertices of edges including these path vertices
are also added if the corresponding edges are
ORIGINAL. For pair of vertices 〈va, vb〉 ∈
Gi+1, edge e = {va, vb} ∈ Gi is added to
Gi+1.

STEP 3: Add SPs and edges to Gi+1

m SPs are defined for edges e ∈ Gi+1 at
even intervals in Gi+1 if e is ORIGINAL. If
pair of vertices 〈va, vb〉 ∈ Gi+1 satisfies both
e = {va, vb} /∈ Gi+1 and either 1. or 2. in
Condition 1, e is added to Gi+1. e is ON-
FACE if 〈va, vb〉 satisfies to 1. in Condition 1,
else e is ORIGINAL. When e is ORIGINAL,
its original edges are deleted from Gi+1.

STEP 4: Update the graph

Gi ← Gi+1

When STEP 1 is finished, the length of shortest path li

of graph Gi and of li−1 of its previous graph Gi−1 are com-
pared. The algorithm is completed if |li − li−1| < ε. The
addition of SPs and edges to G0 described in the previous
subsection corresponds to STEP 3, but the number of SPs

G0 G1

G3 G5

Figure 3. Iterations of the algorithm

per edge m is different. m is another variable that should be
decided by the user. It is a trade-off between the decrease
in the number of iterations and the increase in computing
time and space. While it is also possible to set m to a dif-
ferent value per edge, we set m as a constant value for all
edges because the length of edges in G0 is almost uniform
throughout the pre-processing stage.

The characteristic of this algorithm are presented in Fig-
ure 3 which shows the state for calculating the shortest path
between two given vertices of the bunny model in Figure 2.
We set γ = 0.04, m = 1 for this example, and the algorithm
terminated after seven iterations. In Figure 3, the sequences
of discrete graphs G0, G1, G3, G5 and the shortest path of
each graph calculated in STEP 1 are shown. The thin lines
in Figure 3 represent edges of a graph calculated in STEP 2
and STEP 3, while bold lines show the shortest path calcu-
lated on that graph. It can be seen that the region in which
a path exists gradually becomes narrower and finally con-
verges to a poly line.

Table 1 shows the number of elements (vertices, edges)
on Gi, the length of shortest path li and the sum of each pro-
cessing time for STEP 1 - STEP 4. Our algorithm searches
almost a constant number of edges (from 350 to 400 in this
example) on each graph Gi, except for G0 in the first stage
which has a large number of edges. It can be also seen that
the total time needed for processing our algorithm largely
depends on that for calculating the shortest path on G0 in

|v| |e| li T (sec.)

G0 2,859 16,055 0.52200 0.083
G1 79 361 0.51408 0.017
G2 75 365 0.51277 0.017
G3 76 371 0.51252 0.017
G4 78 393 0.51237 0.017
G5 78 393 0.51234 0.017
G6 70 313 0.51234 0.017

Table 1. Number of elements, length of the
shortest path and processing time for each
graph by our algorithm

STEP 1 by using Dijkstra’s algorithm. We used a simple
method for this problem based on a priority queue of partial-
order trees that can be processed with O(n log n)-time [1].
As this method evaluates the length of each edge, its pro-
cessing time can be decided by the number of edges in G0

and thus by γ.
To implement our algorithm, we prepared a simple graph

structure for representing G, consisting of nodes for vertices
and SPs, and links for (subdivided) edges ofM and addi-
tional edges. Each node has a 3D coordinate value and a
pointer to its connected links. A link has pointers to two end
nodes, has its length, and has a flag for its type (ORIGINAL
or ONFACE). If a node or a link comes from the original
element ofM, it has a pointer to that element. If a link is
ONFACE, the link has a pointer to a face ofM under it.

4. Experimental Results and Discussion

We evaluate in this section our approximate shortest path
algorithm from two viewpoints: one is the approximation
accuracy and computation time with different γ and m; the
other is the numerical accuracy. We also made a compari-
son between our algorithm and the exact computation of the
shortest path on convex polyhedra as proposed by Chen and
Han [2]. We discuss this algorithm in the first subsection.

4.1. Extended CH Algorithm

To evaluate to our approximate path algorithm, we im-
plemented the Chen and Han algorithm [2] (we call it the
CH algorithm from now on) with an extension so that it can
compute the exact shortest path between any two vertices
on a non-convex polyhedral surface.

The CH algorithm improves on the continuous Dijkstra
method proposed by Mitchell et al. It utilizes the unfolding
property (described in Section 2), whereby the shortest path
and its length can be calculated by constructing a sequence

I

B

C

AProje2

I

e

e1
e2

Enode(e2) Proje1

I

Proje
I Enode(e1)

Enode(e)

I

f

Figure 4. Relationship between Enode(e) and
its children in the CH algorithm

tree structure. Its root is start vertex VS , and leaf nodes
are oriented edges. Edge node Enode(e) = (e, I, ProjI

e)
is composed of oriented edge e, image I of VS , and its
projection ProjI

e to an edge. Enode(e) has at most two
child edge nodes. Figure 4 illustrates the relationship be-
tween Enode(e) and its children Enode(e1), Enode(e2).
Each child of Enode(e) can only be defined if projection
ProjĪ

e1
, P rojĪ

e2
of Ī to e1, e2 exists. Ī is calculated by ro-

tating I around e so that Ī and face f are co-planar. It is said
that Enode(e) covers vertex A if both ProjĪ

e1
and ProjĪ

e2

exist. In addition, Enode(e) occupies A if |ĪA| (the Euclid
distance between A and Ī) is the shortest. In this case, A has
vertex node V node(A) = (Enode(e), Ī , A). The shortest
path from VS to VD is calculated by tracing the edge node’s
parents from V node(VD).

The CH algorithm can always be successfully applied if
a polyhedral surface is convex. For the general case, in-
cluding a non-convex surface, there are some cases of VD

not having V node(VD) when the algorithm is terminated.
The shortest path cannot be calculated in these cases. [2]
points out that the shortest path of a non-convex polyhe-
dron may pass some vertices [17] except VS and VD, and
that it is a good choice to grow a sub-tree from a passed
vertex. Unfortunately, no details for growing a sub-tree are
mentioned in [2]. The problem is how or when we can be-
gin to grow a sub-tree, because we cannot judge the vertex
that the shortest path passes through during the process of
the CH algorithm.

An extension for growing a sub-tree is presented next.
We call it the extended CH (ECH) algorithm. Figure 5
illustrates sequence trees of the ECH algorithm. Root
tree Tree(VS , 0) at VS has a sequence of sub-trees. In
Figure 5, such sub-trees correspond to Tree(V1, d1) and
Tree(V2, d2). Tree(V, d) has many pointers: one to the

the root of a tree

non-active edge node

active edge node (stored in the current stack)

S0

S1

S2

S3

S4

Tree(V1, d1)
Tree(V2, d2)

Tree(VS, 0)

Figure 5. Construction of sequence trees in
the ECH algorithm

edge nodes (their number is that of the faces adjacent to V),
one to the vertex nodes (their number is that of the edges
adjacent to V), one to vertex V , geodesic distance d be-
tween V to VS (this can be calculated during the process of
the algorithm) and one to a parent tree. Each of the edge
nodes belongs to the same tree as its parent node. A sub-
tree is created if the edge node occupies a vertex V . If V
with a sub-tree is occupied by another edge node, a sub-tree
(including child sub-trees) and its child edge nodes are all
deleted, and a new sub-tree is created.

Figure 6 shows the pseudo-code of the ECH algorithm.
There are two major differences from the original: (1) the
main loop is controlled by using stack S that stores edge
nodes; (2) when it is judged that an edge node occupies A,
A’s sub-tree (including child sub-trees) are all deleted, and a
new sub-tree is created. The time complexity keeps O(n2),
but its efficiency is worse. The space complexity also keeps
O(n) if only the length of the path is needed, or O(n2) if
the path itself is needed.

4.2. Approximation Accuracy and Computation
Time

We next investigate how different values for user-
specified variables γ and m influence the approximation ac-
curacy and computation time. We used the simplified model
of a “bunny” shown in Figure 7. To simplify the original
model, we used the quadric error metric (QEM) based ap-
proach proposed by Garland and Heckbert [4]. It was diffi-
cult to use the original model because our naive implemen-
tation of the ECH algorithm needed quite a large amount
of space to store the shortest path information. Figure 7(b)
shows a simplified model in which the number of faces is
9,999.

Procedure Extended CH Algorithm
begin

Create Tree(VS , 0, S);
while S �= nil do

Enode(e)← top of S;
unfold I to Ī; calculate Proj Ī

e1
and Proj Ī

e2
;

if Enode(e)’s shadow covers A then
Enode′← previously occupied enode;
if Enode(e) occupies A over Enode′ then

clip off Enode’s two children that is
impossible to define the shortest sequence
and their child enodes;

if A has a tree then delete A’s tree; end if
insert Enode(e1) and Enode(e2) to

Enode(e) as its children and to S′;
Create Tree(A, dA, S′);

else // Enode(e) doesn’t occupy A
insert either Enode(e1) or Enode(e2) that is

possible to define the shorest sequence;
end if

else // Enode(e)’s shadow doesn’t cover A
insert either Enode(e1) or Enode(e2) that is

not empty to Enode(e) as its child and to S′;
end if
S← S′;

end while
end

Procedure Create Tree(V, dV , S)
begin

create Tree(V, dV);
forall edges e opposite to V do

insert Enode(e) to Tree(V, dV) as its child
and to S;

end for
end

Figure 6. Pseudo-code for the ECH algorithm

We obtained the graph data needed for the evaluation.
First, 1000 pairs of vertices from the models in Figure
7(b) were randomly selected. The shortest paths and their
lengths for these pairs are calculated by the ECH algorithm
and by our approximation algorithm with different γ and m.
All our implemention was conducted on a graphics worksta-
tion (CPU: MIPS R10000, 175 MHz).

Figure 8(a) shows a comparison of the approximation ac-
curacy for the model in Figure 7(b). The vertical axis de-
notes the percentage of the average length of the shortest
path of 1000 pairs to that by the ECH algorithm. Figure
8(b) shows a comparison of the computation time for the
model in Figure 7(b), the vertical axis denotes the average
computation time for the shortest paths. The horizontal axis
in each of Figures 7(a)-(b) denotes the value corresponding
to γ. Instead of using γ, which is hard to intuitively un-
derstand, we used the number of SPs per edge which was
calculated from γ.

(a) (b)

Figure 7. The original “bunny” model (35,947
vertices, 69,451 faces) and its simplified
model (5,047 vertices, 9,999 faces)

It can be seen from Figure 8(a) that the average lengths
of the approximate shortest paths for all γ and m are within
a 0.4% approximation accuracy from that of the exact short-
est path. The length of a path with smaller γ approaches that
of the exact path, m giving some contribution to improving
the approximation accuracy. It can also be seen from Figure
8(b) that the computation time with our approximation algo-
rithm is much less than that by the ECH algorithm (170.245
Sec.). The computation time increases with smaller γ or
larger m. In particular, γ has a larger effect on the compu-
tation time than m. The computation time of a path with
larger γ increases in the order of O(n log n).

Figure 8(c) shows a graph that represents the relationship
between the length of the shortest path calculated by our ap-
proximation algorithm and the computation time. The hori-
zontal axis denotes the path length, and the vertical axis de-
notes the computation time. To draw this graph, we classi-
fied the results into five groups according to the path length.
The length interval for each group is 0.2, and we plotted
the weighted average length of each group. The graph rep-
resents the characteristics of our algorithm very well. The
computation time depends on the length of a path. The com-
putation time for paths with different lengths varies in the
order of O(k log k) (k is the number of edges passed by the
shortest path) because our algorithm repeats the Dijkstra’s
algorithm for a discrete graph generated from a path. Figure
8(d) shows a graph of the relationship between the number
of iterations and m. We can see from this figure that larger
m decreases the number of iterations.

It can be seen from all the information in Figure 8 that
our approximation algorithm can calculate the shortest path
within a 0.4% accuracy roughly 100-1000 times faster than
the ECH algorithm. While both γ and m contribute to the
approximation accuracy to a certain extent, it is not always

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 P
at

h
Le

ng
th

Average Number of Steiner Points per Edge

Bunny Model (5,047 vertices, 9,999 faces)

Approx. (m=1)
Approx. (m=3)
Approx. (m=5)
ECH Algorithm

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 C
om

pu
ta

tio
n

T
im

e
(S

ec
.)

Average Number of Steiner Points per Edge

Bunny Model (5,047 vertices, 9,999 faces)

Approx. (m=1)
Approx. (m=3)
Approx. (m=5)

ECH Algorithm (170.245 Sec.)

(a) (b)

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 C
om

pu
ta

tio
n

tim
e

(S
ec

.)

Path length

Bunny Model (5,047 vertices, 9,999 faces)

g=0.016,m=1
g=0.016,m=3
g=0.016,m=5

0

2

4

6

8

10

12

0 1 2 3 4 5 6

T
he

 n
um

be
r

of
 it

er
at

io
ns

m

Bunny Model (5,047 vertices, 9,999 faces)

g=0.01630

(c) (d)

Figure 8. (a)-(b) Relationship between the path accuracy and the computation time (c) Relation-
ship between the path distance and the computation time (d) Relationship between the number of
iterations and m

the case that smaller γ or larger m gives rise to the efficiency
of our algorithm because the computation time is also in-
creased.

Furthermore, we conducted the same experiments for
more simplified models in which the number of faces were
about 1,000 and 5,000 respectively. Almost same results
as those already described were obtained, so they are not
further reported in this paper.

4.3. Numerical Accuracy

We now present experimental data about measurement
of the perimeter length of regular n-gonal prisms. This data
represents the superiority of our approximation algorithm
over the ECH algorithm in terms of its numerical accu-
racy. Figure 9(a) shows a development of a regular n-gonal
prism, and Figures 9(b)-(d) show regular n-gonal prisms in

which n = 10, 100 and 1000, respectively. Perimeter length
d of a regular n-gonal prism is d = 2n sin π

n . In this exper-
iment, we compare an analytical solution for d to solutions
by the ECH algorithm and by our approximation algorithm.

Figure 10 shows the result of d calculated by the analyt-
ical method and by these algorithms for some sampled val-
ues of n from 0 to 15,000. You can see that the solutions by
our algorithm are almost the same as those by the analytical
method, while the solution by the ECH algorithm deviates
greatly from it when n exceeds 3,000. This deviation orig-
inates from the method for calculating a path and its length
by the ECH algorithm, which uses the 3D rotation computa-
tion and accumulates numerical errors. Our approximation
algorithm merely uses the addition of the length of edges
in discrete graphs. Consequently, our approximation algo-
rithm is demonstrably stable in terms of its numerical accu-
racy.

.....

l d

(a)

(b) (c) (d)

Figure 9. Regular n-gonal prisms for evaluat-
ing the numerical accuracy

5. Applications

We applied our approximation algorithm to two applica-
tions, one being as a tool for specifying the local region on
a polyhedral surface, and the other for interactively measur-
ing the geodesic distance on a polyhedral surface.

5.1. Region Specification on a Polyhedral Surface

Operations which specify a region of dense polyhedral
surfaces, especially those generated from range images, are
needed for modeling, rendering and animation. Such ex-
amples are the addition of attributes such as texture [14],
conversion to a parametric surface [9], local deformation of
a polyhedral surface [12, 10, 13] and 3D morphing [7, 8].
We discuss here about the use of our approximation algo-
rithm as a tool for interactively specifying the boundaries
of local regions. It is desirable for the boundaries of these
regions to be smooth poly lines. If a boundary is distorted,
it will negatively effect the quality of the various results in
such applications. Moreover, many trial-and-error opera-
tions are often forced to users. Therefore, the algorithms
used in these operations should be sufficiently fast and effi-
cient for such interactivity.

The application of our approximate shortest path algo-
rithm to boundary specification first involves initial discrete
graph G0 being created. Efficient calculations are possible
by preserving G0 all the time during the input and modifica-
tion of a boundary. Although our approximation algorithm

4

4.5

5

5.5

6

6.5

7

0 2000 4000 6000 8000 10000 12000 14000

P
at

h
Le

ng
th

n

Cylinder Models

Approx.
ECH

Analytical

Figure 10. Comparison of numerical errors by
analytical solution, our approximation algo-
rithm and the ECH algorithm

needs only two vertices to define a path, it is desirable that
the path is composed of more than just vertices for fine and
accurate specification of the boundaries. A path is gener-
ated by defining some control vertices and then by calcu-
lating shortest paths between neighboring control vertices.
Figure 11 shows an example of specifying a “star” region
with many boundary lines on the belly of a “horse” model
(19,851 vertices, 39,698 faces). Spheres in this figure de-
note control vertices specified by the user. The input or
modification of each control vertex leads to re-calculation
of the two paths neighboring it, but this re-calculation is
fast enough to make it possible to specify interactively.

5.2. Measurement of Geodesic Distance

Finding the shortest path to measure geodesic distance
on a polyhedral surface is one of the most important tech-
niques for the application of robotics, GIS, route finding,
and so on. These applications often require the path or its
length to be accurate. A slight deviation from the exact path
might have a bad influence on the application result. On the
other hand, some applications certainly exist in which ap-
proximate solutions are fully acceptable. As an example of
a medical application, measurement of the magnitude of a
tumor of the brain by using 3D models reconstructed from
a sequence of medical images such as those by CT or MRI
can be considered. Our approximation algorithm is thus
also suitable for applications that need interactivity and not
an exact solution.

Figure 11. Generation of boundaries for spec-
ifying a “star” region

6. Conclusion and Future Work

This paper has proposed a new approach for calculat-
ing the approximate shortest path on a polyhedral surface
based on selective refinement of the discrete graph. We have
shown a comparison between our algorithm and the ECH
algorithm in respect of the approximation accuracy, compu-
tation time and numerical accuracy. Two applications that
suit the use of our approximation algorithm are discussed.
The advantages of our approach are as follows:

• It is easy to implement. Only the routine of Dijk-
stra’s algorithm and an additional graph structure are
needed.

• It is fast. The computation time largely depends on a
Dijkstra’s algorithm. Our implementation executes
in O(n log n)-time. Thorup has recently proposed

an O(n)-time method for processing Dijkstra’s algo-
rithm [20]. We need more consideration about this
method.

• It provides high approximation accuracy. In our ex-
amples, an approximation accuracy within 0.4% was
established.

• It is numerically robust. Our approximation algo-
rithm merely uses the addition of the length of edges
in discrete graphs.

• Although we have not described in this paper, it is
also possible to calculate a weighted shortest path.

On the other hand, our algorithm has some disadvantages
which we are working on to improve for the future work.

• Our approximation algorithm results in the shortest
path of a regular polyhedral surfaces (for example,
polygons arranged as a grid) being of low approxi-
mation accuracy. Such an example requires smaller γ
to be set.

• The computation time depends on the length of a
path, consequently, our algorithm cannot give a re-
sponse with a constant time for a polyhedral surface.
This may be an obstacle to some applications.

• The computation time in our algorithm largely de-
pends on the time that searches a shortest path on a
discrete graph G0. To reduce the computation time,
the use of more efficient search method alternative
to Dijkstra’s algorithm should be taken into consid-
eration. For example, A* algorithm [18], one of the
best-first search using the heuristic function, might be
applicable.

Acknowledgement

Part of this research was supported by Elysium Co. Ltd.
The bunny model was from Stanford University Computer
Graphics Laboratory, and the horse model was from Cyber-
ware Inc.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data structures
and algorithms. Addison-Wesley, 1983.

[2] J. Chen and Y. Han. Shortest paths on a polyhedron. In
Proc. 6th ACM Symp. on Computational Geometry, pages
360–369, 1990.

[3] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Computer Graphics
(Proc. SIGGRAPH 96), pages 303–312, 1996.

[4] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. In Computer Graphics (Proc. SIG-
GRAPH 97), pages 209–216, 1997.

[5] L. J. Guibas and J. Hershberger. Optimal shortest path
queries in a simple polygon. J. Computer and System Sci-
ences, 39(2):126–152, 1989.

[6] S. Har-Peled. Approximate shortest paths and geodesic di-
ameters on convex polytopes in three dimensions. In Proc.
13th ACM Symp. on Computational Geometry, pages 359–
366, 1997.

[7] T. Kanai, H. Suzuki, and F. Kimura. Metamorphosis of arbi-
trary triangular meshes with user-specified correspondence.
IEEE Computer Graphics and Applications, 2000, to appear.

[8] T. Kanai, H. Suzuki, J. Mitani, and F. Kimura. Interactive
mesh fusion based on local 3D metamorphosis. In Proc.
Graphics Interface ’99, pages 148–156, 1999.

[9] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to
dense polygon meshes. In Computer Graphics (Proc. SIG-
GRAPH 96), pages 313–324, 1996.

[10] S. Kuriyama and T. Kaneko. Discrete parametrization for
deforming arbitrary meshes. In Proc. Graphics Interface
’99, pages 132–139, 1999.

[11] M. A. Lanthier, A. Maheshwari, and J.-R. Sack. Approxi-
mating weighted shortest paths on polyhedral surfaces. In
Proc. 13th ACM Symp. on Computational Geometry, pages
274–283, 1997.

[12] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. MAPS: Multiresolution adaptive parameteriza-
tion of surfaces. In Computer Graphics (Proc. SIGGRAPH
98), pages 95–104, 1998.

[13] S. Lee. Interactive multiresolution editing of arbitrary
meshes. Computer Graphics Forum (Eurographics 99),
18(3):73–82, 1999.

[14] J. Maillot, H. Yahia, and A. Verroust. Interactive texture
mapping. In Computer Graphics (Proc. SIGGRAPH 93),
pages 27–34, 1993.

[15] C. S. Mata and J. S. B. Mitchell. A new algorithm for com-
puting shortest paths in weighted planar subdivisions. In
Proc. 13th ACM Symp. on Computational Geometry, pages
265–273, 1997.

[16] J. S. B. Mitchell. Geometric shortest paths and network opti-
mization. In J. R. Sack and J. Urrutia, editors, The Handbook
of Computational Geometry. Elsevier Science, 1998.

[17] J. S. B. Mitchell, D. M. Mount, and C. H. Papadim-
itriou. The discrete geodesic problem. SIAM J. Computing,
16(4):647–668, 1987.

[18] E. Rich. Artificial Intelligence. McGraw-Hill, 1983.
[19] M. Sharir and A. Schorr. On shortest paths in polyhedral

spaces. SIAM J. Computing, 15:193–215, 1986.
[20] M. Thorup. Undirected single source shortest paths in lin-

ear time. In Proc. 38th Symp. on Foundations of Computer
Sciences, pages 12–21, 1997.

[21] K. R. Varadarajan and P. K. Agarwal. Approximating short-
est paths on an nonconvex polyhedron. In Proc. 38th Annual
Symp. on Foundations of Computer Science, pages 182–193,
1997.

