
EUROGRAPHICS ’0x / N.N. and N.N. Short Presentations

Hardware-Assisted Relief Texture Mapping

Masahiro Fujita and Takashi Kanai

Keio University Shonan-Fujisawa Campus, Fujisawa, Kanagawa, Japan

Abstract
Image-Based Rendering by Warping (IBRW) creates three-dimensional scene by deforming several 2D images
with depth information. Image-based rendering has an advantage compared to traditional polygon rendering that
the rendering time is still constant even if a scene becomes complex. Relief texture mapping decomposes IBRW into
a very simple 1D image operation and a traditional texture mapping, which allows more effective computations.
In this paper, we try to apply some hi-quality shading effects such as reflection mapping for relief texture mapping.
Their effects can be realized by per-pixel shading technology of today’s graphics hardware. Our method for relief
texture mapping allows fast and almost the same shading as well as traditional polygon rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, Shading, Shadow-
ing, and Texture

1. Introduction

Relief texture mapping8 establishes 3D rendering of image-
based objects by warping several 2D images with depth in-
formation. As the rendering speed does not depend on the
size of 3D model, it has various advantages for rendering
large 3D models compared to polygon rendering.

However, in general, image-based rendering approaches
including relief texture mapping have poor shading quali-
ties than polygon rendering. In the field of polygon render-
ing, there have been various improvements of shading tech-
niques using 2D images. The most popular technique is tex-
ture mapping. By encoding normal or lighting information
as texture image and by blending them, it is also possible to
merge bumpy or lighting effects on polygonal surfaces.

In this paper we discuss a method for combing additional
shading effects in relief texture mapping. Our method adopts
a hybrid approach of multi-texture mapping and image-
based rendering, which allows hi-quality shading effects
with texture-based images. Because traditional graphics API
is designed for rendering per-vertex shading as a basis, it
was difficult to apply image-based techniques which need
per-pixel calculations.

Fortunately, recent graphics hardware such as GeForce3
by has programmable per-pixel shader functions. We use
such functions to combine them with various texture map-
ping techniques.

2. Related work

Rendering Techniques Using Images

Two popular techniques for adding three-dimensional effects
on surfaces by using images are bump mapping1 and dis-
placement mapping3. Bump mapping represents a bumpy
surface by perturbing surface’s normal vector. However, it
does not actually exhibits geometric properties of a surface.
For example, bumpy shapes disappear when a view direction
becomes close to a surface.

On the other hand, displacement mapping can actually
transform geometric property of surface using images which
represents displacement information. Displacement map-
ping can represent more natural bumpy shapes than bump
mapping, but it dramatically consumes rendering computa-
tions because an original surface must be subdivided.

Image-Based Rendering

In recent years, many techniques have been proposed for
image-based rendering (IBR). The movie-map system by
Lippmap6 is the most early technique to reconstruct scene
environment by images, which view directions are limited in
a fixed region. Chen et al. 2 develop QuichTime VR sys-
tem which constructs scene environment from cylindrical
images.

McMillan7 proposes the 3D image warping method which

c© The Eurographics Association 200x.



M. Fujita and T. Kanai / Hardware-Assisted Relief Texture Mapping

Primitives

Per-vertex
Operations

Rasterizer
Setup

Texturing
Fog Operations
Color Sum

Fragment Tests

Texture Shader

Register Combiners

Frame Buffer

Figure 1: Per-pixel shading pipeline

constructs 3D scenes only from several images with its cor-
responding depth information. Relief texture mapping by
Oliveira8 decomposes this 3D image warping approach into
1D image operations (called pre-warping) and texture map-
ping, enabling 3D visual effects only by using images.

Per-Pixel Shading

By per-pixel shader functions originally developed NVIDIA
Corp.4, users can operate some rendering pipeline processes
programmable, especially for texel fetch stage and a part of
fragment processing stages.

In graphics API such as OpenGL, these per-pixel shading
functions replace texture-fetch, fog operation and color sum
states to texture shader and register combiner stages (Figure
1).

In the texture shader stage, there are 21 texture-fetch pro-
grams. Per-fragment operations such as dot product, offset-
ting (perturbing texture coordinates), and clipping tests can
be done. In register combiner state, users can compute frag-
ment colors programmable in GPU by treating fragment data
such as texture color, vertex color, and fog color as like CPU
registers, It also supports per-fragment operations such as
dot product, multiplication, comparison and addition.

Using these functions, it is possible to apply some vi-
sual effects such as reflection mapping which need per-pixel

Figure 2: Relief texture image

dot computation by graphics hardware. DirectX 8.0, one
of widely spread graphics API has already supported these
shader functions. OpenGL, the other major graphics API ,
will support soon (Version 2.0). Thus, we believe this per-
pixel shading functions to become commonly available.

3. Relief Texture Mapping

In this section, we describe the detail of relief texture
mapping. Relief texture mapping is based on the three-
dimensional image warping equation by MacMillan7 which
calculates per-pixel, perspective-corrected image of any
view, using an original image, called source image, corre-
sponded with depth value. The image which is reconstructed
at any view position is called target image.

Oriveira8 decomposes three-dimensional warping equa-
tion into pre-warping equation and texture mapping. Relief
texture mapping is achieved by generating a pre-warped im-
age on a source image plane using pre-warping equation, and
then projecting it to a target image plane using texture map-
ping.

A pre-warped image can be calculated by resolving each
moving position (ui,vi) on a source image plane. From the
relationship between (ui,vi) and a point (us,vs) on an origi-
nal image, we define a pre-warping equation as follows:

ui =
us + k1displ(us,vs)
1+ k3displ(us,vs)

(1)

vi =
vs + k2displ(us,vs)
1+ k3displ(us,vs)

(2)

k1 =
�f · (�b×�c)
�a · (�b×�c)

,k2 =
�f · (�c×�a)
�b · (�c×�a)

,k3 =
�f · (�a×�b)
�c · (�a×�b)

where �a,�b,�c, �f denote coordinate axis vectors of both the
source and the target images, displ denotes the orthog-
onal displacement. As the pre-processing, we calculate
(k1displ(us,vs),k2displ(us,vs),1/1 + k3displ(us,vs)) and
store constant tables to use depth values as indices. These
tables are used to calculate (ui,vi) effectively at the render-
ing process.

Textures of relief texture mapping consist of images of
color pixels and their associated depth values. (Figure 2). It

c© The Eurographics Association 200x.



M. Fujita and T. Kanai / Hardware-Assisted Relief Texture Mapping

Figure 3: Object represented by relief texture mapping

is possible to represent an object by organizing textures as
cube (Figure 3).

We use forward warping to calculate a final image of a tar-
get image plane from each pixel of a source image plane. A
pre-warping equation described above follows this forward
warping. In forward warping, sampling is needed because
one pixel of source image plane can be possibly mapped one
or more pixels of a target image plane.

4. Hardware-Assisted Relief Texture Mapping

In this section, we describe our method for replacing a part
of operations of relief texture mapping to per-pixel shader
functions. We also apply some shading effects to relief tex-
tures, normal mapping, reflection mapping and light map-
ping using these functions.

4.1. Replacing Relief Texture Mapping Procedure

An original relief texture mapping is done by the following
procedure:

1. Set view point and view direction.
2. Pre-caluclate constant table.
3. Generate pre-warped image from a source image.

a. Calculate pre-warping position (ut ,vt) using pre-
warping equation (1), (2).

b. Copy color pixels of a source image to pre-warped po-
sitions.

c. If the pixel covers one or more pixels of a target im-
age, then interpolate several sampling points.

4. Render quad polygons by applying pre-warped images as
texture.

With our method, relief texture mapping using per-pixel
shading functions replaces the original procedure described
above to the following procedure:

1. Set view point and view direction.
2. Pre-caluclate constant table.
3. For each pixel of source image (us,vs), generate offset

map using the following procedure.

a. Calculate pre-warped position (ut ,vt) using pre-
warping equation (1), (2).

Texture
Unit No.

Tex. Coord Shader
Tex.
Fetch

Output
Color

TEXTURE_2D

(ds, dt)

(0, 0, 0, 0)(S0, T0, R0, Q0)

(S1, T1)
Sout = S1+ds
Tout = T1+dt

(Sout, Tout) (R, G, B, A)

0

1

Figure 4: Per-texel normal perturblation using offset-
texture-2d

source image offset map warped image

Us Ut

(R, G, B) (Us, Vs)

(R, G, B)

Vs

Vt

Figure 5: warping image generation using offset-texture-2d

b. Write positions of source image (us,vs) as a RGB
value to pre-warped position.

c. If the pixel covers one or more pixel of target image,
then interpolate several sampling points.

4. Render quad polygons with texture shader to OFF-
SET_TEXTURE_2D, offset map as source, source image
as target.

4.2. Generating Offset Maps

Offset Texture 2D (OFFSET_TEXTURE_2D) function is one
of texture shader functions (Figure 4). This can perturb tex-
ture coordinates in texel level. A pre-warped image of relief
texture mapping can be represented as offset values using
offset texture (Figure 5). In the pre-warped image calculation
phase, we generate them a pre-warped image texture by writ-
ing positon information as rgb value, called offset map, not
by generating a pre-warped image texture dynamically copy-
ing source image pixel. In the texture rendering phase, cal-
culating a warped image and applying multiple texture map-
ping can be done at a time using OFFSET_TEXTURE_2D
function (Figure 6). Each pixel value of this offset map rep-
resents a texel position of a source image. Once an offset
map is calculated, it is possible to apply it to other reference
images such as normal map described below (Figure 7).

4.3. Normal Mapping

Because relief texture only stores surface colors, diffuse
shading is possible by using only relief texture. More com-
plex shading such as specular hilights, lighting and reflection
mapping requires surface normal information. However, as a

c© The Eurographics Association 200x.



M. Fujita and T. Kanai / Hardware-Assisted Relief Texture Mapping

Offset map Source Pre-warp

+

Figure 6: Pre-warp image generation from source image us-
ing offset map.

Offset map Source Pre-warp

Figure 7: Applying offset map to different source images.

relief texture is an “image”, it cannot compute surface nor-
mal in rendering time. Then, it is possible to calculate shad-
ing computations which require surface normal information
by providing normal information as images in advance. Nor-
mal map is the texture which represents x,y, z coordinates
of a normal vector as a RGB value. By combining this nor-
mal map and relief texture mapping, shading operations such
as per-pixel reflection mapping described below, is possible.
We create normal map using BMRT rendering tool5 with
custom shader which converts a normal vector into a RGB
value.

4.4. Reflection Mapping

By using DOT_PRODUCT_CONSTANT_EYE_REFLECT_
CUBE_MAP, one of texture shader functions, it is possible to
apply per-pixel reflection mapping (Figure 9). dot-product-
constant-eye-reflection-mapping is the function of reflection
mapping using cube map texture with constant view (eye
vector is constant). Cube map texture is the texture repre-
senting reflected environment as 6 images of cube (Figure
10).

Per-pixel reflection mapping using texture shader can be
done with the following 2-pass rendering procedure:

1. Set normal map for source image.
2. The first pass: Render pre-warp image of normal map

using offset map.
3. Read back frame buffer and converts a rendered pre-warp

image into texture.
4. The second pass: Set texture shader to DOT_PRODUCT_

Figure 8: normal map

Figure 9: Per-pixel constant eye reflection mapping.

CONSTANT_EYE_TEXTURE_CUBE_MAP, texture unit
0 to pre-warp texture of normal map rendered in pass 1,
and texture unit 3 to cube map texture, then render.

The reason why our reflection mapping is done in 2-pass
is that GeForce3 video card we target in this paper is up to
4 texture units in each pass. Our method uses 2 units for
warped image generation, 4 units for dot-product-constant-
eye-cube-map texture shader, summing 6 texture units. If a
future video chip supports over 6 texture units, it can be ren-
dered in a single pass.

c© The Eurographics Association 200x.



M. Fujita and T. Kanai / Hardware-Assisted Relief Texture Mapping

Figure 10: Cube map texture (courtesy of NVIDIA Corp.)

Texture
Unit No.

Tex. Coord Shader
Tex.
Fetch

Output
Color

Cube map

Arbitrary
Tex.
Dependant

Tex.
Dependant

(R, G, B)

(S1, T1, R1)

(S2, T2, R2)

(S3, T3, R3)

Ux = (S1, T1, R1) * (R, G, B)

Uy = (S2, T2, R2) * (R, G, B)

Uz = (S3, T3, R3) * (R, G, B)

(0, 0, 0, 0)

(0, 0, 0, 0)

(0, 0, 0, 0)

U = (Ux, Uy, Uz)

E = (Ex, Ey, Ez)

R = 
2U (U * E)

(U * U)

(Rx, Ry, Rz)
(R1, G1, B1)

0

1

2

3

Figure 11: Texture shader settings for constant eye reflection
cube map

4.5. Light mapping

If the lighting has only a diffuse component and is static
(such as lighting of radiosity), it is possible to add lighting
information to relief texture image using pre-computation. If
the lighting is view-dependent, a specular component should
be included, or light may be moved dynamically, the light
map can be used (Figure 12). Light map is the reflection cube
map which value is light intensity, not reflected environment.
So we can apply this light mapping by a similar procedure
of reflection mapping. By using light mapping, it is possible
to include complex lighting into relief texture mapping.

5. Results and Discussion

The comparison of rendering performance between our pro-
posed hardware-assisted method and software implemented
method is shown in Table 1.

Each value is the frame-rate of rendering two relief tex-
ture with 256x256 pixel size on PentiumIII 1GHz PC with

Figure 12: Light mapping which have green hilights

Figure 13: Light map image

Geforce3 graphics card. In gouraud shading, there are no
differences. In reflection mapping rendering, our method is
25% faster than software rendering.

Relief texture mapping is finally rendered as texture
mapped planar polygon, so depth buffer records the depth
of planar polygon. Thus, The inconsistency occurs when
mixing it with traditional polygon rendering. To repre-
sent correct depth of relief texture in screen space, it
requires per-pixel depth modification. Texture shader’s
DOT_PRODUCT_DEPTH_OFFSET displaces depth value
based on per fragment dot calculation. Using this functions,
it may be possible to represent correct depth in screen space.

Reflection mapping presented here is organized with read-
ing back the frame buffer and with converting into textures in
the first pass. Usually, frame buffer access is very costly op-

c© The Eurographics Association 200x.



M. Fujita and T. Kanai / Hardware-Assisted Relief Texture Mapping

Shading Method Frame/sec

Gouraud Software 14.0
Gouraud Hardware-assisted 13.0

Reflection mapping Software 8.3
Reflection mapping Hardware-assisted 10.4

Table 1: rendering performance(rendering of two 256x256
relief texture)

eration. Recent graphics hardware supports off-screen ren-
dering called P-buffer (Pixel buffer) extension9. This enables
faster memory copy from frame buffer into texture. By us-
ing P-buffer extension, it is expected that the process which
needs 2 or more pass rendering such as reflection mapping
shown as our proposed method can be significantly faster.

6. Conclusion and Feature Work

We presented the combination of relief texture mapping and
hardware-assisted various image mapping method and have
shown that these enables hi-quality shading images. We have
also shown that it is possible to compute texture-based shad-
ing efficiently once offset maps are calculated. By using
multi-pass rendering, complex and accurate shading can be
added to relief texture mapping. We expected that the ap-
pearance of per-pixel shading functions enables the ability
of real-time rendering more higher.

Because our implementation of the reflection mapping is
eye constant, shading quality is poor. The texture shader has
a dot-product-cube-map-reflection function which uses tex-
ture coordinates as view position. However current texture
shader only supports per-vertex texture mapping input, not
per-fragment.

In the gouraud shading, there is no difference in rendering
speed between software implementation and our hardware-
assisted implementation. If we implement pre-warping equa-
tion and re-sampling process with per-pixel shading func-
tions, more speedup will be expected. Currently, we try to
implement pre-warping equation by using texture shader and
register combiner, but we suffer from lack of floating point
accuracy, then our trivial implementation cannot get correct
results.

References

1. J. F. Blinn. Simulation of wrinkled surfaces. In Com-
puter Graphics (Proc. SIGGRAPH 78), pages 286–292.
ACM Press, New York, 1978.

2. S. E. Chen. Quicktime VR — an image-based approach
to virtual environment navigation. In Computer Graph-
ics (Proc. SIGGRAPH 95), pages 29–38. ACM Press,
New York, 1995.

3. R. L. Cook. Shade trees. In Computer Graphics
(Proc. SIGGRAPH 84), pages 223–231. ACM Press,
New York, 1984.

4. S. Dominé and J. Spitzer. Texture shaders.
Game Developers Conference (NVIDIA Corp. pre-
sentation slide), 2001. http://developer.nvidia.com/
view.asp?IO=texture_shaders.

5. E. Inc. BMRT: Blue moon rendering tools.
http://www.exluna.com/.

6. A. Lippman. Movie-Maps: An application of the op-
tical videodisc to computer graphics. In Computer
Graphics (Proc. SIGGRAPH 80), pages 32–42. ACM
Press, New York, 1980.

7. L. McMillan. An image-based approach to three-
dimensional computer graphics. Technical Report
TR97-013, University of North Carolina at Chapel Hill,
Computer Sceience Department, Apr. 1997.

8. M. M. Oliveira, G. Bishop, and D. McAllister. Relief
texture mapping. In Computer Graphics (Proc. SIG-
GRAPH 2000), pages 359–368. ACM Press, New York,
2000.

9. C. Wynn. Using P-buffers for off-screen rendering
in OpenGL. NVIDIA Corp. white paper, 2001.
http://developer.nvidia.com/view.asp?IO=PBuffers_
for_OffScreen.

c© The Eurographics Association 200x.


