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ABSTRACT
In this paper, we propose a novel data-driven method that uses
a machine learning scheme for formulating fracture simulation
with the Boundary Element Method (BEM) as a regression problem.
With this method, the crack-opening displacement (COD) of every
correlation node is predicted at the next frame. In our naïve predic-
tion, we design a feature vector directly exploiting stress intensities
and toughness at the current frame, so that our method predicts the
COD at the next frame more reliably. Thus, there is no need to solve
the original linear BEM system to calculate displacements. This
enables us to propagate crack-fronts using the estimated stress in-
tensities. There are existing works which use the machine learning
approach to accelerate the speed of traditional physics-based simu-
lations like smoke and �uid, but our work is the �rst to incorporate
the machine learning scheme into BEM-based fracture simulations.
Our implementation accelerates the acquisition of displacements
in linear time over the number of crack-fronts at each time step
compared with the conventional solution whose time complexity
grows exponentially based on the BEM linear system.
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1 INTRODUCTION
Rigid body fracture simulation is playing an increasinlgy important
role in computer graphics applications such as games, movies, etc.
A number of approaches for simulating the fracture of objects have
been proposed in the past. Among them, one of the most used
methods is the geometry-based method which employs pre-de�ned
fracture patterns for the object when fractures are needed. However,
this method is unable to carry out accurate physical computation.
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Physics-based methods (including �nite element method, mass-
spring system, and meshless method) have excellent accuracy in
expressing fracture patterns which re�ect natural phenomenon
better than geometry-based approaches. However, these methods
cannot well describe details of fracture patterns like fracture sur-
faces. There are several methods for dealing with such issues such
as re-meshing which can be used to increase details on fracture
surfaces, but these methods are costly due to complex mesh manip-
ulations.

Recently, physics-based fracture simulation by the boundary
element method (BEM) is being proposed [Hahn andWojtan 2015b].
This BEM method can well capture fracture surface details using a
sheet of triangles. In addition, the number of elements for simulation
can be reduced by using surface mesh instead of volumetric mesh.
However, it is more ine�cient to solve dense linear systems using
the �nite element method (FEM) compared to solving sparse linear
systems with BEM. The costs of calculating displacements increase
when the number of crack-fronts increases or when the fracture
is complicated in BEM analysis. Although a fast approximation
method to estimate displacements for BEM-based simulations was
proposed by the same authors [Hahn and Wojtan 2016], the linear
system still has to be solved for each frame of a simulation.

In this paper, we explore a totally di�erent approach based on
machine learning for the simulation of brittle fracture surfaces.
There are existing works which use the machine learning approach
to accelerate the speed of traditional physics-based simulations like
smoke and �uid, but our work is the �rst to incorporate machine
learning scheme into BEM-based fracture simulations. With our
method, instead of solving the linear system for each frame of
fracture surface simulation, the approach of learning and predicting
is taken. In particular, we use a database to predict crack-opening
displacements (COD), a parameter for solving linear equations. It
enables us to approximate brittle fracture surfaces without solving
linear equations.

To predict CODs, we adopt the regression forest [Breiman 2001]
machine learning approach. With this approach, it is very impor-
tant to determine the feature vector for ensuring good performance
of regression forest, and consequently accurate prediction of CODs.
Here we discuss feature vectors that can fully describe all the infor-
mation needed to determine the next frame’s COD, which will be
used for computing stress intensities for propagation.

2 RELATEDWORK
2.1 Geometry-based Fracture Animation
Terzopoulos and Fleischer [1988] �rst proposed fracture models in
the computer graphics area. One approach for fracturing objects
is the geometry-based method, also known as pre-de�ned model,
which is a very popular method commonly used in computer games
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or movies. Fracture patterns pre-de�ned by users are applied when
the fracture phenomenon is needed or strong collision occurs. The
generation of pre-de�ned fracture patterns requires tools that can
control size as well as the shape of fractured fragments like Voronoi
diagram. For example, Raghavachary [2002] describes a method
of generating fracture fragments under the principle of Voronoi
tessellation. Ne� and Fiume [1999] propose a fracture model which
allows rapid fracture by dividing a plane into fragments with the
shape of polygon after the user speci�es a speci�ed angle. Mould
[2005] also presents an image �lter where the input is a drawing
line constructed using Voronoi diagram. Based on this, the image
of fractured surface is output. Although geometry-based approach
allows users to control the fracture patterns, the fractures cannot
re�ect natural phenomenon dynamically. Also, the pre-de�ning step
requires considerable preparation for designing fracture patterns.
Müller et al. [2013] presents a method for resolving such issues
by aligning a pre-de�ned fracture pattern with an impact location,
allowing fast dynamic fracture of objects.

2.2 Fracture Simulation
Accurate simulation of fracturing objects is another approach of
generating fractures in objects. The mass-spring system is one of
the simplest method for simulating objects to be fractured. Within
this system, the object is viewed as a set of particles with mass and
position connected by springs pairwisely. Norton et al. [1991] mod-
eled objects from simple lattice cubic cells, then generated fractures
by breaking the link between cubes. Hirota et al. [1998] used the
mass-spring model to generate crack fracture patterns like drying
surface layer for many objects like surface of roads and drying
mud. Mazarak et al. [1999] simulated explosions using connected
voxel representation of objects which make the explosions more
realistic by replacing �at arti�cial slices with more natural volu-
metric segments. Mass-spring models are sometimes popular due
to their simplicity in modeling, but it is hard to describe physical
quantities like strain and stress using the mass-spring system. Also,
the orientation of the fracture plane cannot be de�ned.

Finite element analysis can well depict stress and strain rela-
tionships. O’Brien and Hodgins [1999] proposed brittle fracture
simulations with the �nite element method (FEM). Later, O’Brien
et al. [2002] again presented ductile fracture as well. Although FEM
can well de�ne the oreintation of fractures, it cannot determine the
forward direction of crack tips. Besides, this method also su�ers
from artifacts due to stress-based fracture criteria. On the other
hand, Müller et al. [2001] proposed a hybrid method where static
analysis is independent of time-step allowing simulating of frac-
tures of objects in real-time. Bao et al. [2007] treated material as
fully rigid body to solve issues introduced by small time step re-
strictions. Glondu et al. [2013] used modal analysis to initiate and
propagate cracks with energy based algorithms. Their approaches
are based on non-linear FEM analysis where the object is repre-
sented as discretized tetrahedral meshes.

The boundary element analysis of fractures by representing ob-
jects as triangle meshes has been proposed recently. Rather than
simulating fractures with �nite elements, our research is based
on the boundary element method developed by Hahn and Wojtan
[2015b] where displacements are computed directly by solving the

resulting dense BEM system. Later, they proposed fast approxima-
tions of displacements and stress intensities for simulating BEM-
based fractures [Hahn and Wojtan 2016], but a linear system still
has to be solved. Zhu et al. [2015] presented fractures with surface
meshes by solving the layer potential, after which stress analysis is
performed with displacements by integrating potentials.

2.3 Data-Driven Approach for Simulations
Various types of data-driven based approaches for speeding up �uid
simulations have been explored. A data-driven based approach that
formulates �uid simulation as a regression problem with regression
forest has been proposed, where the acceleration of a particle for
each frame is predicted using a trained regressor [Ladický et al.
2015]. The projection step is a time-consuming step in grid-based
�uid simulation. Yang et al. [2016] proposed a data-driven approach
with arti�cial neural network (ANN) to migrate iterative computa-
tional costs, where the results of the projection step can be obtained
in constant time for each grid cell. The operator splitting method
within standard �uid solvers has to solve ill-conditioned linear
equations, and the Convolutional Network (ConvNet) serves as a
subsitute for realizing fast and realistic simulations [Tompson et al.
2016].

These researches aim to accelerate �uid simulation with data-
driven based approaches. However, there are very few researches
presented for brittle fracture simulation. By combining learning
methods with physical brittle fracture simulation, our research has
obtained fast and highly similar results as traditional solvers.

3 SIMULATING BRITTLE FRACTURES WITH
BOUNDARY ELEMENTS

This section brie�y reviews brittle fracture simulation with bound-
ary elements from the previous works of Hahn andWojitan [2015b].
We describe their work especially from the view of constructing
brittle fracture surfaces including crack initialization and crack
propagation.

Starting from a given highly detailed surface triangle mesh, it
is transformed to a coarse mesh (called BEM mesh), which is used
in BEM linear system computation. Known boundary conditions
are then applied to a BEM mesh, and an initial BEM linear system
in Equation (1) is then obtained [Kielhorn 2009]. Surface stress
with displacements can be computed, and the new cracks will be
initiated if the element’s principal stress is larger than material
strength, [

V −K
KT D

] [
q
u

]
=

[
fD
fN

]
, (1)

where u and q refer to displacements of boundary and tractions,
which are unknown variables, and the known coe�cient matrices
including matrix blocks V,K,D are determined by initial mesh
structures. In particular, V is a symmetric positive de�nite matrix.
The right hand side of the linear system is known boundary data
including the Dirichlet and Neumann boundary that speci�es the
boundary values along the boundary of the computational domain.
They use Schur complements to solve this system (see Equation
(5.18) in [Kielhorn 2009]).
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Figure 1: Displacement correlation technique. ∆u is evalu-
ated on correlation node of crack-front.

A new linear system is launched where the new cracks are added
during crack propagation in Equation (2). This is from the formula-
tion of Symmetric Galerkin Boundary Element Method (SGBEM) in
[Frangi et al. 2002], which solves for crack-opening displacements
(CODs) ∆u, norm of which is the distance between two faces with
opposite surface normals of the crack,

V −K −Kc
KT D Dc
KT
c DT

c Dcc



q
u
∆u

 =

fD
fN
0

 . (2)

The sizes of matrix blocks Kc ,Dc ,Dcc and ∆u become larger ac-
cordingly when new cracks are added to the BEMmesh, whereas the
matrix elements V,K,D computed beforehand remain unchanged.

Crack-opening displacements ∆u are obtained by solving Equa-
tion (2), and then stress intensities are calculated by the displace-
ment correlation technique from [Ingra�ea and Wawrzynek 2003],

KI = µ
√
2π

∆uI
√
r (2 − 2ν )

,

KII = µ
√
2π

∆uII
√
r (2 − 2ν )

,

KIII = µ
√
π
∆uIII
√
2r
,

(3)

where ν is a Poisson’s ratio, µ is a Lamé parameter, and r is the
distance from a correlation point to its corresponding crack-front
as illustrated in Figure 1. ∆u is evaluated at the correlation node
which is the interior node of a triangle that contains the crack-front
edge. Then ∆u is projected onto a local coordinate system (x ,y, z)
of the crack-front, thereby resulting in the acquisition of ∆uI, ∆uII,
and ∆uIII.

E�ective stress intensities are then calculated as Ke�
2 = KI

2 +
KII

2 + KIII
2/(1 − ν ), to determine whether the cracks should propa-

gate. Material toughness is de�ned as Kc 2 = 2γE/(1 − ν2), where
E is Young’s modulus and γ is the material surface energy (see
paper [Freund 1998] for details). Cracks propagate if Ke� ≥ Kc .
The detailed crack propagation including propagation speed and
direction is described in [Hahn and Wojtan 2015b].

4 DATA-DRIVEN SIMULATION OF
FRACTURE SURFACES

The BEM-based brittle fracture simulation summarized in Section
3 is physically accurate. However, the cost becomes very expensive

when solving the BEM linear system for crack-opening displace-
ments (CODs) in each step of the simulation with the number of
crack-fronts increasing. This section introduces prediction-based
approximation of crack-opening displacement instead of solving
linear equations.

4.1 Predicting Crack-Opening Displacements
with Regression Forest

Previously, fracture simulations using the BEM solver were per-
formed by solving linear equations at each step. However, it is very
costly to solve linear equations every time the COD is changed. In
addition, the time cost also becomes larger accordingly when CODs
get larger. q and u are changed at each frame in Equation (2), but
they are not used for crack propagation. On the other hand, ∆u is
necessary for obtaining stress intensities during crack propagation.
We thus only estimate CODs through our prediction method, where
we regard q and u as unchanged value and zero respectively.

To predict CODs, we adopted the machine-learning approach
using regression forest [Breiman 2001]. Reasons why the use of
regression forest is appropriate are; (1) it can handle continuous
values for predictions such as CODs, (2) it can �t large-scale data,
and (3) both training and prediction can be carried out quickly.

Feature vector design. What is to be addressed here is how to
design the feature vectors for regression forests. By calculating
stress intensities through crack-opening displacements in Section
3, we know they have strong relevance with CODs where CODs
need to be exploited to calculate stress intensities. Thus we consider
using stress intensities as part of our feature vector, where stress
intensities at the current frame determine CODs at the next frame.
Our feature vector should well describe the factors in�uencing the
jump of two fracture surfaces. Three candidate feature vectors were
tested in our research, namely (KI,KII,KIII), (KI,KII,KIII,Kc ) and
(KI,KII,KIII,Kc , r ) respectively. Kc is the toughness set for material,
which is constant of some models, or changeable for some other
models. r is distance for which the crack-front has propagated. The
toughness also a�ects the CODs of the next frame if it is a variable.
Larger CODs are obtained with smaller toughness. We chose the
most proper feature vector (KI,KII,KIII,Kc ) from the above three
candidates, and conducted experiments described later.

The restriction for fast regression methods is the need to cal-
culate feature vector constantly. Stress intensities, toughness, and
distance can all be calculated in constant time. This is the linear-
time calculation taken according to the number of crack fronts for
each frame when estimating CODs.

4.2 Overview of Our Method
Figure 2 shows an overview of our method. In this �gure, we list
both the BEM-based fracture simulation system and our data-driven
based fracture simulation process respectively. Our method aims
to replace the original BEM solver with our regression forest based
prediction. We only perform physical computation with the BEM
solver at the �rst frame, and then prediction from the second frame.

We propose a novel data-driven method that uses a machine
learning scheme which predicts projections ∆uI,∆uII,∆uIII of the
correlating node of the crack-opening displacement of the next
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Figure 2: Left: Flowchart of BEM-based fracture simulation
system. Right: Flowchart of our prediction system.

frame onto the local coordinate system of the current frame’s crack-
front.We designed a feature vector with stress intensitiesKI,KII,KIII
and material toughness Kc of the current frame’s crack-front con-
taining information on determining the next frame’s crack-opening
displacements of correlating nodes.

However, we do not predict crack-opening displacement ∆u di-
rectly in our implementation. Instead, we use its projections ∆uI,
∆uII, ∆uIII onto the local orthonormal coordinate system of the cur-
rent frame’s crack-front as our label. Crack-opening displacement
(COD) is de�ned in the world coordinate system, however, stress
intensities are calculated in the local coordinate system of the crack-
front. The direct use of CODs as our label is not proper since the
CODs in the world coordinate system are rotation-variant values.
We thus use their projections onto the local coordinate system for
crack-fronts, to ensure that our naïve prediction is performed at
the same coordinate system.

With predicted projections of CODs, we then convert projec-
tions to the COD of the next frame through the transformation
from the local coordinate system to the world coordinate system.
Approximated CODs of correlating nodes at the next frame are
then assigned to corresponding crack-fronts. Stress intensities can
then be acquired through the displacement correlation technique
in Section 3. The crack propagation proceeds in the same way as
the previous BEM-based fracture simulation of [Hahn and Wojtan
2015b].

4.3 Training Samples Creation and Learning
Stage

Figure 3 shows the creation process for training samples.We usually
create a large number of training samples by executing BEM-based
simulation many times where we use random force directions with
di�erent magnitudes as our initial conditions for BEM-based frac-
ture. For each direction with a force magnitude, we obtain a set of
training samples under this condition. Our training for regression
forest is done with the method as in [Breiman 2001] by creating a
set of decision trees learned for each subset in the training stage
and by averaging all predictions from individual trees as �nal pre-
diction. At the training stage, subsets from the original dataset

BEM-based
simulation

{(𝐾I
(𝑛−1)

, 𝐾II
(𝑛−1)

, 𝐾III
(𝑛−1)

, 𝐾𝑐
(𝑛−1)

) → 𝛥𝐮𝑖
(𝑛)}

Training samples creation
- Execute BEM-based simulation with changing direction and magnitude of force 

Training 
samples

Trained regression forest

…

…

Figure 3: Creation of training samples and the construction
of regression forest.

are constructed with the bootstrap aggregating approach, where
each training sample of the subset can be chosen randomly with
replacement.

A training sample is de�ned as,{ (
K
(n−1)
I ,K

(n−1)
II ,K

(n−1)
III ,K

(n−1)
c

)
→ ∆u(n)i

}
, (4)

where K (n−1)
I ,K

(n−1)
II ,K

(n−1)
III ,K

(n−1)
c refers to stress intensities and

material toughness of the crack-front at current frame n − 1, where
∆u(n)i refers to the projections of the COD of the interior node at
the next frame n, and i = I, II or III, which are three axes to which
COD is projected onto.

In our implementation, we do not directly predict three projec-
tions with only one regressor, instead we split our training data
into three parts, where each part only contains one projection as
the label. Thus we have three regressors which are used to predict
anyone of the three projections when inputting the same feature
vector.

5 RESULTS AND DISCUSSION
Weperform experiments on a desktop PCwith Intel®Core™ i7-2600
3.40GHz CPU and 32GB RAM. We evaluate our method mainly by
comparing our data-driven based results with BEM-based fracture
simulation results. We have three di�erent databases including
Cube database, Armadillo database and Bar database. We will de-
scribe how to construct them later. For BEM-based brittle fracture
simulation, we use FractureBEM source code [Hahn and Wojtan
2015a] provided by the authors of [Hahn and Wojtan 2015b] and
HyeNA library [Graz University of Technology 2016] provided by
the Institute of Applied Mechanics, Graz University of Technology.
In the training and prediction stage, we also use the source code
[Perception and Robotics Group 2014] provided by Machine Per-
ception and Robotics Group, Chubu University as our regression
forest implementation. We only consider two important parameter
settings, which are the number of trees t and maximal depth of the
tree d in the training stage. In later discussions, we denote such
parameters as (t ,d).

Prediction of Cube’s fracture. As discussed in Section 4.3, the
training samples are created by changing the direction and mag-
nitude of force applied to object. For directions and magnitudes
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Figure 4: Random force creation. α is the slope angle and β
is the rotation angle.

of forces applied to a Cube model, we here created any direction
which is sampled randomly within the range of hemisphere and
any magnitude which is between two di�erent hemispheres’ radii.

Figure 4 shows how to generate di�erent forces randomly. This
�gure only illustrates one side’s force, there is also another force
which has the same pull intensity but with di�erent direction in
another side, both of which are applied to cube at the same time.
For each force generated by our random process, we obtain a set
of training samples through a BEM-based simulation. For Cube
database, we have 1,235,511 training samples. The force is applied
on the surface’s same location every time.

We �rst test Cube database with our prediction method on a
Cube triangle mesh by applying forces with the same magnitude
but di�erent directions whose α = 0, 45 and 90 degree and β = 0
degree as our initial condition, where α is the slope angle and β is
the rotation angle as illustrated in Figure 4. Parameters including
the number of trees and the maximal depth of regression forest are
(50,10) for the Cube database in the training stage.

The results of our method compared with the BEM-based simula-
tion are shown in Figure 5. In this �gure, fracture patterns at the last
frame for di�erent directions of initial forces applied to Cube are
shown. In the �rst two columns of the �gure, one half of the split
Cube is shown. In the third column, un-fractured Cube is shown
whose inner shaded surface is the fracture surface. It can be seen
that our method can well approximate the BEM-based simulation
results.

Figure 6 shows logarithmic graphs of 0 and 45 degree’s stress in-
tensities by our method and BEM-based simulation. In these graphs,
“KI BEM”, “KII BEM”, and “KIII BEM” refer to stress intensities ob-
tained by the BEM-based fracture simulation. On the other hand,
“KI multi D”, “KII multi D”, and “KIII multi D” represent stress intensi-
ties obtained by our prediction method with random database. The
results show that our method can obtain good estimates for stress
intensities. Although the di�erence of KIII between our method and
the BEM-based fracture simulation seems larger than that of KI and
KII, KIII is a smaller scaled value compared with KI and KII, thus we
still consider that the di�erence is not so large.

Other models. We also evaluate our method on an Armadillo
model and a Bar model with their respective databases.

We create databases for the Armadillo and Bar by changing only
the force magnitudes for the same direction. For the Armadillo’s
database, we have 150 di�erent pull intensities for the horizontal

(a) (b) (c)

Figure 5: Initial forces applied on Cube model are shown in
the �rst row. The second row refers to BEM-based simula-
tion results, and the top bottom row is our data-driven re-
sults. From left to right are 0,45, and 90 degree test cases re-
spectively.

direction. The number of sample nodes is 12,611 with regression
forest parameters (10,10). For the Bar’s database, we also have
150 di�erent pull intensities for the perpendicular direction. The
number of sample nodes is 71,323 with (50,10) as our regression
forest parameters. Figure 7 shows the comparison between BEM-
based simulation result and our prediction result for two models.
The result shows that our method has good estimation of fracture
surfaces like the second row as well as the third row of �gure.
Although there is some di�erence between Bar’s fracture surfaces
at the left bottom, it seems natural to have such di�erence. In our
naïve prediction, we only predict ∆u rather than u which is set
zero. Thus the prediction of Bar’s fracture does not have bending
deformation while BEM-based simulation does. This leads to such
di�erence on fracture surfaces.

Predicting Cube’s fracture under three loadingmodes. In pre-
vious experiments, we performed prediction based fracture simula-
tion for all models using their respective databases. We now only
use the random Cube database to test the Cube model whose load-
ing mode for crack propagation is di�erent from previous fracture.
For the Cube database, the same database created randomly in the
previous experiment described above is used.

Figure 8 represents Cube model where the Cube initiates its
cracks with a planar edge-crack under loading modes I, II, and III.
The three loadingmodes are de�ned in [Freund 1998] and illustrated
in the �rst row of Figure 8. Mode I represents the crack-opening
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Figure 6: Comparision of stress intensities obtained by BEM-
based simulation and our prediction method by using loga-
rithmic graphs. (a) Test case for 0 degree. (b) Test case for 45
degree.

along the perpendicular direction of the fracture surface, mode II
represents the crack-opening sliding along the normal direction of
the crack-front, and mode III represents tearing along the tangental
direction of the crack-front.

The result shows that we can still use the same Cube database to
well predict other situations of crack propagation which are not in
database compared with BEM-based simulation. In our method, we
can well predict the pattern of crack propagation in nature, which
is �t to any model or situations of crack propagation.

Feature vector selection. In Section 4.1, we noted that there are
three candidate feature vectors including (KI,KII,KIII), (KI, KII, KIII,
Kc ) and (KI,KII,KIII,Kc , r ) respectively. We explain here why we
select (KI,KII,KIII,Kc ) as our feature vector through experiments.
In order to simplify the experiment process, we construct a data-
base by only changing the magnitude of force instead of direction.
The number of training samples is 9,328, and the parameters for
regression forest is (10,10). Figure 9 shows the comparison between
the results of BEM-based simulation and our prediction results
with three features, four features, and �ve features. It can be seen
that the fracture appearances of our prediction method with four
features and �ve features are more similar to that of BEM-based
fracture simulation than with three features. Finally, we select our

Fixed

aaaaaaaaaaaaaaaaaaaaaaaaaaaa

(a) (b)

Figure 7: Comparisons between BEM-based simulation and
our prediction method. (a) Results for Armadillo model. (b)
Results for Bar model. From top to bottom: illustration of
initial forces applied to models, fracture surfaces of two
modelswith BEM-based simulation, fracture surfaces of two
models with our prediction method.

feature vector with four features by a trade-o� between memory
and computation time.

Performance.We list the performance of BEM-based simulation
and our prediction method for several models in Table 1. The results
shown in this table are based on previous experiments including
the prediction of the Cube’s fracture with Cube database which
is created randomly, and prediction of the Armadillo and Bar’s
fractures with their respective databases. In the “Fracture Scene”
column, 0, 45 and 90 represent the direction of initial force applied
to Cube.

It can be shown in the “U-com” column that the time for com-
puting displacements can de�nitely be reduced compared with the
BEM-based simulation. The total simulated time is not reduced
through our method for the Cube. However, this result seems natu-
ral since the Cube’s fracture is too simple and BEM-based simulation
is quite fast. It should be noted that our method can perform better
as the number of triangles in BEM mesh increases.
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Fracture Scene Tri-ini Tri-�n Method Total time U-com Sim-frac Other-t frame u/frame
Cube0 120 389 BEM 5.00s 0.09s 2.55s 2.36s 13 0.007s

120 391 RF (random) 5.79s 0.029s 1.50s 4.26s 13 0.0022s
Cube45 120 396 BEM 5.28s 0.15s 2.69s 2.44s 13 0.011s

120 397 RF (random) 6.74s 0.038s 1.72s 4.98s 14 0.0027s
Cube90 120 470 BEM 7.14s 0.33s 3.51s 3.5s 16 0.02s

120 640 RF (random) 6.84s 0.040s 1.98s 4.82s 14 0.0029s
Armadillo 1000 1252 BEM 47.84s 4.89s 9.35s 33.6s 16 0.31s

1000 1169 RF (Armadillo) 32.21s 0.21s 3.82s 28.18s 11 0.019s
Bar 416 1687 BEM 60.32s 7.49s 20.8s 32.03s 21 0.35s

416 1825 RF (Bar) 48.02s 2.64s 11.9s 33.48s 21 0.117s
Table 1: Performance of our predictionmethod vs. BEM-based simulation. From left to right: (Tri-ini) The number of triangles
in initial BEMmesh. (Tri-�n) The number of triangles in �nal BEMmesh. (Method) Method of fracture including BEM-based
simulation and regression forest-based predictionmethod (RF). (Total time) The total simulated time during thewhole fracture
process. (U-com) The time for computing CODs. (Sim-frac) The total time for simulating fractures. (Other-t) The total time for
other processes like reading a model, writing to disk, loading regressors with our method etc. (frame) The number of frames
for simulation. (u/frame) The time for computing displacement per frame.

mode I mode II mode III

Figure 8: Comparison results between BEMmethod and our
predictionmethod under three loadingmodes. The �rst row
represents BEM-based simulation results with initial load-
ing modes, and the second row represents their cossepond-
ing predction results.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a machine learning scheme that achieves
fast approximation of crack-opening displacement (COD) instead of
solving linear equations in the propagation of cracks. We designed
a set of features including stress intensities and toughness at the
current frame which have a strong in�uence on CODs at the next
frame in our naïve prediction, and trained a regressor capable of
predicting the projections of CODs of the next frame. Our method
reduces the time for computing CODs compared with BEM-based
simulation. The time cost can be reduced considerably especially
when the resolution of initial BEM mesh increases. Our approach
shows a great potential for replacing the traditional BEM solver, es-
pecially when the time cost is more important than the accuracy of

(a) (b)

(c) (d)

Figure 9: (a) BEM-based simulation result for Cube. (b)-(d)
Prediction results with three features, four features, and �ve
features respectively. All experiments are performed with
the same initial force.

fracture simulations, like in computer games. This is the �rst time a
machine learning scheme is used in BEM-based fracture simulation,
which should serve as useful reference for other researchers.

In our future work, we will try to combine several databases
from di�erent models and use it to test several di�erent models. In
addition, there are improvements that can be made such as acceler-
ation of the mesh update process. Another interesting direction is
to try to use di�erent machine learning approaches such as Con-
volutional Neural Network (CNN) for our regression. Finally, we
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will attempt to combine fracture animations with the rigid body
dynamics engine.
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