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Abstract—Feathers are sophisticated skin appendages on
bird skin, with massive fiber curves (called barbs) branching
out from a shaft. Each barb uses its hooklets (called barbules)
to further interlock with each other and form two surfaces. We
propose a biological modeling scheme that follows the natural
feather development to procedurally reproduce common biolog-
ical characteristics on outputs. Based on our investigations of
biology studies, we chooes to generate pathlines of particles in a
velocity field to emulate the helical growth of barb curves inside
a cylindrical feather follicle, then apply forward kinematics to
pathline curves to mimic the unfurling of a feather after its
follicle sheath breaks off. We also develop an optional barb
snapping algorithm to mimic the geometric restriction from
barbules between barbs. Our modeling scheme can achieve
feather growth simulation in 3D rather than 2D space, and it is
also the first step to prove that it is feasible to alter macroscopic
feather geometry via microscopic barbules, both of these topics
are less discussed in the field of CG feather modeling. Because
of the high compatibility with biology theories, our scheme is
expected to be a better basis for discussing other CG feather
topics.
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I. Introduction

Feathers, like hairs and furs, are one of the most noticeable
skin appendages that can be found in nature. However, unlike
a human hair that can be represented by a single strand, or
animal furs that can be rendered in group as offset shells on
a surface [1], an individual feather holds a highly complex
structure with hierarchical branches, which is insufficient to
be described by one simple geometric primitive or pattern.

Simply speaking, a feather has a stiff shaft (called rachis)
at the middle, to which hundreds of barbs attach them-
selves and adjacently interlock with each other (the hooklets
along a barb are called barbules) one by one to form
two macroscopic-level blades. In order to model such a
structure, NURB curves are frequently used to define pri-
mary geometric information including rachis, barb curve
template, and blade outlines along with various auxiliary
parameters in modern CG software. However, artists often
need to manually adjust control points to directly approx-
imate feather shapes and patterns. Such an approximation
modeling scheme is straightforward, but it does not touch
upon the process of real feather growth. Therefore, the
morphogenetic factors that may have decisive effects on the

final feather shape and pattern cannot be discussed under
this scheme.

Outstanding CG techniques originating from the study and
measurement of biological materials have been successfully
developed with regard to hair rendering [2] in the past.
Meanwhile, although few attempts have been made to de-
velop feather modeling techniques by deeply digging biol-
ogy background, substantial biology researches on feather
development are being carried out in recent years. We
have also been conducting multidisciplinary investigations
on feather morphogenesis to see how we can contribute
to areas that cannot be handled with traditional feather
modeling schemes.

In this paper, we present a novel modeling scheme that
follows the process of feather morphogenesis, abstracts the
concepts and phenomena during the development, then maps
them into different emulation processes. Our scheme first
defines the geometry of a follicle sheath and the growth
velocity field to generate barb curves. We then emulate the
unfurling process of a feather out of the sheath and adjust
barb curves by considering the geometric restrictions of the
interlock between them.

II. Related Work
A. Academic studies on feather modeling

The first attempt at modeling CG feathers can be traced
back to Dai et al.’s work [3] in 1995. They used user-
defined quadratic functions to propagate the orientation
of line segments of barb curves in 2D space. However,
their work only focused on Galliformes family feathers, and
quadratic functions were not sufficient for representing the
barb curvature of mature feathers properly.

Chen et al. [4] proposed an impressive method based on
parametric L-system grammars. By following pre-defined
NURB curve templates, they used the L-system to generate
new segments for rachis and barbs, and to limit barb lengths
by using two pre-defined NURB curves as outlines.

An important parameterized approach proposed by Streit
et al. [5] elaborately defined geometry properties for rachis
and barbs. The rachis was modeled by a cubic Bézier curve,
and barbs were generated by interpolating multiple key
Bézier curves along the rachis. In the same year, Franco
et al. [6] independently presented a similar parameterized
approach, but unlike the previous one, two Bézier curves



were used as the outline, and the control points of barb
Bézier curves were randomly generated.

Recently, Baron et al. [7] proposed a data-driven approach
that can produce more biologically sensible outputs. They
analyzed real feather atlas and directly extract outline and
rachis curve in polynomial or spline form, saving the need
for manual definitions. A variant of Franco et al.’s method
was then used to generate barb curves.

Some biologists [8][9][10] have attempted to establish
mathematical models to describe the barb growth based on
feather morphogenesis, but their direct definition of barb
angle to rachis has been a drawback. Section III-C shows that
the barb angle is dynamic and differs among different stages.
Thus their model may be enough for biological discussions
but not for CG modeling, Conversely, mature approaches
involving the direct definition of barb angles have been used
in previous CG works.

B. Industry practices
Based on our review, artists tend to
• use polygon mesh to model large individual feather

accompanied by fur for expressing fine details [11],
• directly model barbs as line segments and rely on

shading techniques to get high quality [12][13],
• generate barb curves from deformed NURB or polygon

surface [14][15].
A number of CG feather modeling tools are based on the
variant method from Streit et al. [5] or Franco et al. [6]
as it provides sufficient parameters for artists to manually
approximate a CG feather geometry to a real feather scanned
photo.

III. Biological Background
In this paper, the biological information of a feather is

treated as two categories: external geometric information and
internal morphogenesis information. An elaborate explana-
tion about bird feather basis is provided in the early literature
from Lucas and Stettenheim [16], while a more modern
explanation about feather morphogenesis can be found in
the annual review from Chen et al. [17].

A. Feather structure
Feathers are hierarchical branching organs that cover bird

skin. At the human-eye recognizable scale, there are three
primary components that most of feather types possess:

• Rachis: the shaft of a feather,
• Barbs: massively branching from two sides of a rachis,
• Barbules: massively branching from two sides of a barb.

These components are shown in Figure 1 left. The barbules
between two sides of a barb are highly differentiated in
some types of feathers. The distal barbules of a barb can
hold hooklets that hook the curved margin of the proximal
barbules on the adjacent barb, which form a locking state

Figure 1. Left:Wing feather from Japanese Large-billed Crow. Big white
arrow on the rachis shows the direction of the feather tip. Right vane
is split manually to exhibit a single barb at the middle and barbules in
locking state at the right bottom. Refer to Figure 3 for more details on
the anatomical orientation of feathers. Right-top: Contour feather from
Pigeon, with only partially compact vanes. Right-bottom: Tail feathers in
background and crest feathers from Peacock head. Take note of the large
spacing between barbs that prevents the tail feather from becoming compact.
Image by tinkaelectrona is licensed under CC PDM 1.0.

and fasten all barbs together to form one surface at each
side: left and right vanes [18].

The existence of barbules is one of the key factors that
cause diversification of feather type. Figure 1 right-top
shows a typical contour feather, where the lower barbs hold
longer barbules without hooklets so they are fluffy, while
the flight/wing feather is fully pennaceous so its barbs are
highly compact. Moreover, the barb spacing also affects the
compactness (Figure 1 right-bottom), since barbules cannot
reach each other if the spacing is too large.

B. Feather morphogenesis
Morphogenesis is a biological term used to describe the

formation of a certain organ at a cellular level. For feathers,
this process takes place inside the cylindrical follicles on bird
skin [19][17]. When a feather is growing, stem cells (pink
squares in Figure 2 A) inside the ring-shaped collar actively
proliferate and migrate distally. When the proliferated cells
reach a thin horizontal area (ramogenic zone in Figure 2 B),
they start to differentiate and rearrange, and the wave-like
structures, barb ridges, start to emerge (Figure 2 C), each of
which contains cells for future barb and barbules [20][17].
Therefore, the tip of a feather is actually formed earlier, and
we assume that the emergence order and initial location of
each barb ridge have a decisive effect on the final tip shape.

How cells are added has a great impact on the final feather
shape. Due to the effect of chemical gradients [21][22],
barb ridges elongate towards the anterior polarity (Figure
3) after their emergence, causing the helical growth and the
fusion of barb ridges into a rachidial ridge (Ra in Figure 2
C) that becomes the future rachis. This is the reason why
most feathers have such a branching structure. In this case,
the first few new barb ridges initially emerge one by one



Figure 2. Overview of feather follicle structure. Drawings are based
on the findings of Yue et al. [21]. (A) Schematic drawing of developing
follicle, which shows the helical arrangement of barb ridges (black and gray
curves). (B) Zoom-in of follicle collar. The proximal ends of barb ridges
start to form after cells reach the ramogenic zone. (C) Real horizontal
cross-section of follicle at level of red line in B. Ra shows the locus and
width of the rachidial ridge at the anterior polarity, the barb ridges lie on
the circumference and continuously emerge from the barb generative zone
BGZ located at the posterior polarity. This image C by Cheng et al. [23]
is licensed under CC BY 4.0. Modified from original.

Figure 3. Schematic drawing of anatomical orientation terms.

from anterior towards posterior polarity until the emergence
position reaches the barb generative zone (BGZ in Figure 2
C), where all subsequent new barb ridges emerge from.

C. Feather maturation
When a follicle becomes mature and its sheath starts to

break from the distal end, mature barbs and rachis are pushed
out, and unfurl themselves from helical to flat forms, similar
to how a paper tube is cut and flattened on a table. This
break-off process involves the mechanical behavior of barb
and barbules, and it creates a particular phenomenon: the
“expansion” of two feather vanes [9]. Due to the elasticity
of the barb material, each barb may have additional angle
changes along its curve, which often causes wider vanes.
But due to the locking system, the length and orientation of
barbules can restrict this change. However, the details of the
underlying mechanical principles remain to be studied.

IV. Method
We propose a biological modeling scheme that proce-

durally generates feather vanes based on the natural facts

Figure 4. Left: Schematic top view of C(s) of follicle cross-section.
The arrows indicate the tangential movement direction of El and Er .
Right-top: Schematic drawing of El process in helical growth stage. Blue
trails indicate the completed barbs. Red trails indicate the developing barbs.
Right-bottom: Example of speed distribution defined on C(s). Typically,
the gradient should slant from the anterior to posterior polarity to match
the curvature of the convex tip and barb pattern of the feather.

mentioned in Section III. We first emulate the basic feather
morphogenesis and maturation with three stages: Helical
growth, Unfurling and Expansion to generate barb curves
for two feather vanes, after which the rachis cylinder can be
created using an external CG modeling software.

A. Helical growth
The first stage emulates the helical growth of barb ridges

inside the follicle, including emergence and elongation, by
using the particle movements in a velocity field.

Collar definition: As Figure 4 left shows, we define the
collar as a closed curve C(s) parameterized by arc length
percentage s ∈ [0,1] in right-handed Cartesian space. Math-
ematical representation (e.g. a circle) or closed composite
cubic Bézier curve can be used for this definition.

To simplify the discussion, we use the term locus to
specify the location s of an object on C(s) in a 1D curvilinear
space. We also use the period “.” to specify the properties
of an object. We assume that the axis of collar is aligned
with the +y axis, C(0) is located on the −z axis, and the
movement is said to be positive if it follows the clockwise
direction. Under these assumptions, a possible definition of
collar can be

C(s) =
{

x(s) = sin(2π · s)
z(s) = − cos(2π · s) (1)

According to Section III-B, we know that the rachidial
ridge (anterior polarity) and barb generative zone (posterior
polarity) segregate the collar into the left and right arcs. The
two polarities of the collar are defined as two intervals IA
and IP on C(s). Specifically, we denote the boundaries of
an interval by a locus pair <left, right> (see Figure 4 left).



Additionally, IA should be guaranteed to include C(0), IP
is typically located around C(0.5) but is not mandatory.

Tangential Movement: To generate new barbs, we de-
fine two moveable emitters El and Er for the left and right
side of C(s), so that every emergence of a new barb ridge
can be interpreted as an emission from an emitter. As Figure
4 left shows, each emitter starts moving from one boundary
of IA. If all barb ridges are assumed to have the same width
denoted by d, after moving (i+1)·d, the emitter generates the
initial point Pbi

0 (i = 0,1, . . .) for the new i-th barb curve bi .
When generated, the current locus of the emitter and current
timestamp are recorded to Pbi

0 .locus and Pbi

0 .t respectively.
When an emitter meets the same side boundary of IP , its
movement is clamped at the boundary but its emission still
proceeds.

Then the tangential speed of emitter movement is deter-
mined by its current locus in a steady velocity field defined
on C(s). We use ®V (s) to denote any of this kind of field on
C(s) and V(s) as its scalar distribution counterpart. Because
the directions of emitter movements are already defined
(from anterior to posterior polarity), users only need to
define its magnitude at each locus in this 1D curvilinear
space: a scalar speed distribution Ve(s) for emitters.

The calculation of the trail of a massless particle moving
in a velocity field, namely pathline, is a classic problem in
fluid mechanics and velocity field visualization [24]: for an
arbitrary particle p in any ®V at time t, it must satisfy:

d p
dt
= ®V (p(t)) (2)

Therefore, the pathline can be calculated by integrating
Equation 2, and the locus of emitters can be calculated as

El .locus = max
{
IP .left,IA.left −

∫ tcurr

Pbi
0 .t

Ve(s(t))dt
}

(3)

Er .locus = min
{
IP .right,IA.right +

∫ tcurr

Pbi
0 .t

Ve(s(t))dt
}

(4)

where tcurr refers to the global timestamp after the emulation
starts from 0 second. The 4th-order Runge-Kutta method is
used as the solver in our implementation.

To emulate barb elongation, once Pbi

0 is generated, it
starts moving like an emitter, but in the opposite direction
on C(s). After every iteration of numerical calculation, the
locus of Pbi

0 is recorded as subsequent points Pbi

j ( j = 1, . . .)
for the barb bi . The tangential speed is defined as a speed
distribution Vb(s) for all barbs. When Pbi

0 meets the bound-
ary of IA, the elongation terminates and bi is considered
as completed and mature (blue trails in Figure 4 right-top).
Equation (3) (4) can also be applied to the calculation of
Pbi

j .locus by replacing each term correspondingly.
Longitudinal Movement: New cells migrate upward

from bottom and push old cells higher, we emulate this
activity as longitudinal movement aligned to the y axis. The

Figure 5. Schematic top view of effect of partial unfurling and fully
unfurling. The collar is represented by circle and the line sequence ABC
is a barb curve downsampled to 3 vertices. Vertex A is the root of this
discrete curve. Tangent is continuous at vertex B when partially unfurled.

scalar growing speed vgrow of the follicle defined by the user
is used for calculating the y coordinate of Pbi

j :

Pbi

j .p.y = vgrow · (tcurr − Pbi

j .t) (5)

where Pbi

j .p refers to the 3D world space position of Pbi

j .
Termination & Conversion: The emulation can be

terminated when N barbs of either vane are mature, and all
other developing barbs (red trails in Figure 4 right-top) are
discarded. The x and z coordinate of Pbi

j .p are calculated by
simply evaluating C(s) by Pbi

j .locus. In order to reduce the
high density of generated barb curve points, we introduce
a downsampling process by only selecting every f -th point
for the output, with most proximal and distal points always
included. After all barb curve points are converted into 3D
space vertices, the result is delivered to the next stage.

B. Unfurling
The second stage emulates the flattening of feather vanes

released from the follicle sheath by using forward kinemat-
ics. Although the barb growth direction is from distal to
proximal, from a forward kinematics perspective, a proximal
vertex is the parent of its distal vertex child. For simplifying
the discussion, from now on, Pbi

j ( j = 0,1, . . .) denote barb
vertices from the proximal to distal end.

Selection of frame: A 3D space discrete curve is
defined by a finite sequence of 3D space vertices on an
original smooth curve, and our output from the last stage
can be seen as discrete curves. At each vertex Pbi

j , there is
a discrete frame consisting of three unit vectors: tangent ®t ,
normal ®n and binormal ®b. We calculate this frame as:

Pbi

j .
®t = dir ·

dC(Pbi

j .locus)
ds

(6)

Pbi

j .®n = Pbi

j .
®b × Pbi

j .
®t (7)

Pbi

j .
®b = ®uy (8)

where ®uy is a unit vector of y axis, dir = −1 for left vane
and dir = 1 for right vane. Note that our discrete frame is
different from the discrete frenet frame. The latter uses ®t to
indicate elongation direction of a curve, while ours indicates
only the tangential movement direction of helical growth.

Figure 5 shows an example of unfurling a barb. We assume
the binormal at each vertex to be the rotation axis. Unfurling
can be achieved by aligning



1) each line segment to the tangent of the parent frame,
2) each tangent to the tangent of the parent frame,

and it ensures similar tangent continuity between discrete
curve ABC and virtual arc ABC when only a part of barb
curves are fully unfurled.

Hierarchization & Rotation: The execution of unfurling
involves rotation but it requires a hierarchical chain for each
barb curve. Discrete frames can help build such hierarchy by
using its normalized vectors as orthonormal coordinate basis.
For Pbi

j+1, we can calculate all vector porperties (position,
discrete frame, etc.) of the hierarchized vertex P̂bi

j+1 located
in the local space formed by the frame of parent P̂bi

j as

P̂bi

j+1 =Mbi

j Pbi

j+1, P̂bi

0 = Pbi

0 (9)

where the transformation matrix Mbi

j can be written as

Mbi

j = M̂bi

j−1 · · · M̂
bi

0 , M̂bi

j =
(
R̂bi

j

)−1 (
T̂bi

j

)−1
(10)

where the rotation matrix R̂bi

j is built by P̂bi

j .
®t , P̂bi

j .®n and
P̂bi

j .
®b, and the translate matrix T̂bi

j is built by P̂bi

j .p.
After hierarchization, the tangent and binormal are always

®uz = (0,0,1) and ®uy = (0,1,0) for each parent frame, so the

alignment of
−−−−−−−→
Pbi

j−1P
bi

j and Pbi

j .
®t to Pbi

j−1.
®t can be done by

simple linear algebra. If we apply a weight w ∈ [0,1] to the
rotation angle, we can further control the degree of unfurling.

C. Expansion
The third stage emulates the additional barb curve change

based on the restriction from barbules. Due to the lack of
biological supports and mechanical analysis, it is beyond
our capabilities to correctly reproduce this phenomenon.
However, the geometric restriction from barbules can still
be considered.

Construction of barbules: Barbules grow inside barb
ridge, and the shaft they fuse to has a special term ramus.
After a barb ridge matures, the enclosed barbules are re-
leased and rotate around the ramus to flatten themselves.
Because the tangential and longitudinal movement velocity
of helical growth depict the ideal elongation direction at each
vertex, we can calculate the ramus vector ®r at Pbi

j as

®r = vgrow · Pbi

j .
®b + Ve(Pbi

j .locus) · Pbi

j .
®t (11)

See Figure 6 top-right for details.
After finding the ramus vector, we can construct two

barbules in the semi-spherical coordinate system (Figure 6
bottom-right). We assume that the ramus is located at the
crest of the barb ridge, and the same angle is flattened for
the two barbules. So if a barb ridge has lridge height, the
distal barbule vector ®vd can be calculated as (substituting
θd to θp to calculate proximal barbule vector ®vb)

®vd = R(®r, ϕ)
(

lridge

tan(θd)
· ®r
|®r | + dir · lridge · Pbi

j .®n
)

(12)

Figure 6. Top-Left: Schematic drawing of internal structure of barb
ridge. Top-Right: Schematic drawing of calculating ramus vector ®r (yellow
arrow). ®r is lying on the plane formed by ®t and ®b. Bottom-Left: Schematic
drawing of mature barb with barbules. Bottom-Right: Schematic drawing
of release of barbules from barb ridge. ϕ: Azimuth rotation angle for two
barbules, ϕ = π/2 in this case. θd&θp : Zenith angle from ramus to
distal/proximal barbule.

Figure 7. Schematic drawing of snapping between two adjacent barbs.
Gray vertical line indicates one side of the rachis.

where dir is the same as the one in Equation 6. The zenith
angle θd (or θp) and the azimuth angle ϕ for constructing
rotation matrix R(®r, ϕ) around ®r are all defined by the user.

Snapping of barbules: If vanes hold barbules that are
fully interlocked with each other, each barb must fully snap
to the adjacent one. Based on this geometric restriction,
we propose an algorithm to snap two barbs by rotating the
discrete frame at every barb curve vertex. Because only distal
barbules have hooklets, the snapping should start from the
most distal barb and proceed proximally. One cycle of our
algorithm can be summarized as follows (Figure 7):

1) Generate proximal barbules for the current barb from
the proximal to distal end.

2) Calculate the boundary formed by the tips of proximal
barbules.

3) Generate distal barbules for the next barb from the
proximal to distal end.

4) For each vertex, rotate its frame so that the tip of
its distal barbule touches the boundary above. If they
cannot be touched, stop processing all subsequent
vertices.

When constructing the boundary, there is a gap between



Figure 8. Generation sequence of contour feather with helical growth
stage and unfurling stage enabled. The global timestamps tcurr for each
image from left to right are 6 sec, 12 sec, 18 sec, and 24 sec.

the rachis and the first proximal barbule. As Figure 7 shows,
the first line segment of the boundary AB is extended to
cover this gap, then the root vertex C of the next barb
projects itself to AB as D to form a new line segment.

After constructing the boundary from bi , for Pbi+1
j on

bi+1, we check the intersection of two elements:
• sphere with Pbi+1

j as center and |Pbi+1
j .®vd | as radius,

• each line segment that forms the boundary.
If the intersection exists, we always take the most distal
intersection position then snap the tip of current distal
barbule to this position.

V. Results and Discussion
Implementation: Our program is implemented by C++

and OpenGL, and runs on a desktop PC with Intel® Xeon™
E3 3.30GHz CPU and NVIDIA® GeForce GTX 760 GPU
and 16GB RAM. The real-time procedural generation of
feather vanes can be performed at 30 ∼ 60 fps, allowing
the interactive adjustment for artists. As for the parameter
configuration in our program, we use a similar definition like
Equation 1 for C(s). For any scalar distribution/gradient on
C(s), we use curve editor for its definition.

Considering the particularity of our theme and the close
relationship with biology, our primary evaluation method is
to check whether we have the ability to reproduce common
biological characteristics, and also to compare the charac-
teristics between our outputs and real feathers.

Growth simulation: Figure 8 shows a typical result
of our implementation. The helical stage is responsible for
continuously pushing new barbs out, resulting in two vanes
growing from the base. With the unfurling stage enabled and
the global unfurling factor w set to 1.0, all helical barbs are
fully unfurled, presenting a realistic simulation of feather
breaking out from follicle sheath in 3D space.

Tip, lateral side, and bottom shape: Due to the mech-
anism of morphogenesis explained in Section III-B, the
determinants for the different parts of the vane outline
are different. The curvature of the tip shape highly relies
on the different emergence timestamp of each barb ridge,
resulting in height offset among the distal end of barbs, and

Figure 9. Different vane outlines under different speed distributions.

Figure 10. Feather vane asymmetry controlled by the locus shifting of
the posterior polarity. The posterior polarity intervals IP from left to right
are IP .left = 0.51, IP .right = 0.49; IP .left = 0.41, IP .right = 0.39;
IP .left = 0.21, IP .right = 0.19.

is controlled by Ve(s) (Figure 9 left). The Ve(s) is convex
downward at s = 0.5 so that the speed of emitters slows
down when approaching BGZ, making the tip slopes blend
perfectly into the two lateral sides of vanes.

Figure 9 middle is an extreme case of the tip shape not
blending into the lateral sides but forming two distinct sharp
angles that look abnormal. This phenomenon exists in nature
and can be found on specific birds. A good example is the
tail feather of Wild Turkey.

Vb(s) controls the barb patterns, which also means it
can control the bottom shape of feather vanes, because the
bottom shape is just the curve of the most proximal barb
itself for many compact feathers (Figure 9 right).

Vane asymmetry: The different arc lengths on the collar
from the anterior to posterior polarity is the reason why
some feathers may have asymmetric vanes, and it is a critical
biological characteristic for the aerodynamics of flight/wing



Figure 11. Feather without expansion (top-left) and with expansion (top-
right). Vane splitting compared with real feather (bottom-row).

feathers. Figure 10 shows how the vane width asymmetry
is controlled by only moving the interval of IP (posterior
polarity) from about s = 0.5 to s = 0.2 on C(s). The
change of the tip slope and vane width correctly reflects the
characteristic of asymmetric wing feather that the nearer a
wing feather is located to the end of a wing, the narrower is
its distal vane (leading edge), and the broader is its proximal
vane (trailing edge) [16].

Expansion: Although expansion is one of the most dif-
ficult phenomena to simulate due to its mechanical complex-
ity, our geometric-restriction based algorithm indeed boosts
the reality of the outputs. There is a common characteristic
for compact vanes that during the morphogenesis the barb
ridges near the posterior polarity are usually smaller than
those near the anterior polarity. This often causes the barbule
length to decrease distally. As a result, the barb spacings
around the edge of vanes appear more compact than those
around the rachis. The measurement data from Feo et al.
[10] also proves this characteristic. So we give a similar
distribution for barb ridge height lridge and assign it as a
property to Pbi

j based on Pbi

j .locus. The result is the same
as we expect (Figure 11) when valid parameters are used.
Furthermore, our snapping algorithm allows calculation of
the vane deformation when it is split. By manually bending
an intermediate barb curve before executing snapping algo-
rithm, the vane can be split and lower barbs can be deformed
accordingly.

However, we found that our algorithm suffers a flaw
caused by the insufficient barbule information at the proxi-
mal end of a barb. In Figure 12, we have to extend the line
segment AB of the proximal barbules boundary to cover the
barbule-absent area. However, the extension of AB cannot
always guarantee the intersection with the sphere with center
C and radius |−−→CD |. As a result, the snapping process for
this whole barb is skipped, and the valid range of parameter
settings is limited.

On the other hand, the phenomenon in the left of Figure 12

Figure 12. A flaw occurred in expansion. Certain barbs cannot snap to
their adjacent distal barbs because of the inappropriate boundary extension.
Proximal barbules are in blue. Distal barbules are in red.

Figure 13. Rendered wing and crest feather by using our output in Maya.

indeed exists in nature, it can be interpreted as the barbules
are intentionally unzipped at these places. It is common to
find this kind of flaw on real feathers but the reason causing
this flaw in our output is not desired.

Figure 13 shows the rendered feathers using our output.
All of the three stages are used to produce the feather
vanes. Barb curves are rendered as ribbons, and rachis is
modeled by a simple cylinder in CG software. Note that the
crest feather at the right is modeled by stopping the whole
emulation process before emitters reach the barb generative
zone, leading to the generation of tip barbs only.

VI. Conclusion and Future Work
In this paper, we present a novel feather modeling scheme

by referring to existing studies on microscopic biological
activities inside feather follicle and emulating the real growth
of a feather.

In our scheme, the helical growth stage generates a
prototype of two vanes in a unified model, avoiding the
independent definition of the geometry of two vanes without
taking biological correlations into consideration. The usage
of collar also guarantees the blendability of different vane
asymmetry by simply moving the locus of posterior polarity.

The unfurling stage emulates the “hatching” of a feather
from its follicle sheath, which provides the possibility to
animate the growth process of a feather.

The expansion stage emulates the geometric restriction
from barbules, and provides a feasible way to express the
microscopic level influence on the macroscopic level shape.

In summary, the most important advantage of our scheme
is the linkage to biological studies, meaning that it has the



potential to transplant cellular mechanism to CG feather
modeling to internally guarantee biologically-sensible out-
put, and users are not required relevant biology knowledge
to manually ensure this. We take the first step to study
the relationship between barbules length and feather vane
shape & barb pattern, which has not been discussed yet
in the field of CG feather modeling. Our work can also
be a basis of visual characteristics rendering from barbules
like structural color, which has a high correlation with
barbule orientation (our modeling scheme can conveniently
provided this information). However, our advantage is also
our limitation. Many biology theories are qualitative rather
than quantitative, and the valid ranges of parameters are
limited.

In the future, we aim to further improve our scheme. In
this study, we assumed that all barb ridges have the same
width in the helical growth stage, which is not true from
a biological perspective. “How barb ridge width affects the
curvature of final barbs and collar size” is still unknown and
needs investigation. In addition, since the collar changes size
during the different phases in regenerative cycling, we are
considering to explore its influence on the lateral side shape
of feather. Finally, it is promising to develop a more precise
barb snapping algorithm by investigating barb and barbule
properties in the bioengineering field.

References
[1] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe, “Real-

time fur over arbitrary surfaces,” in Proc. Symposium on
Interactive 3D Graphics. ACM, 2001, pp. 227–232.

[2] S. R. Marschner, H. W. Jensen, M. Cammarano, S. Worley,
and P. Hanrahan, “Light scattering from human hair fibers,”
in ACM SIGGRAPH 2003 Papers. ACM, 2003, pp. 780–791.

[3] W.-K. Dai, Z.-C. Shih, and R.-C. Chang, “Synthesizing
feather textures in galliformes,” Comput. Graph. Forum,
vol. 14, no. 3, pp. 407–420, 1995.

[4] Y. Chen, Y. Xu, B. Guo, and H.-Y. Shum, “Modeling and
rendering of realistic feathers,” ACM Trans. Graph., vol. 21,
no. 3, pp. 630–636, Jul. 2002.

[5] L. Streit and W. Heidrich, “A biologically-parameterized
feather model,” Computer Graphics Forum, vol. 21, no. 3,
pp. 565–573, 2003.

[6] C. G. Franco and M. Walter, “Modeling and rendering of
individual feathers,” in Proc. XV Brazilian Symposium on
Computer Graphics and Image Processing. IEEE Comput.
Soc, 2002, pp. 293–299.

[7] J. Baron and E. Patterson, “Procedurally generating biologi-
cally driven feathers,” in CGI2019: Advances in Computer
Graphics, vol. 11542. Springer International Publishing,
2019, pp. 342–348.

[8] R. O. Prum and S. Williamson, “Theory of the growth and
evolution of feather shape,” Journal of Experimental Zoology,
vol. 291, no. 1, pp. 30–57, 2001.

[9] T. J. Feo and R. O. Prum, “Theoretical morphology and devel-
opment of flight feather vane asymmetry with experimental
tests in parrots,” Journal of Experimental Zoology Part B:
Molecular and Developmental Evolution, vol. 322, no. 4, pp.
240–255, 2014.

[10] T. J. Feo, E. Simon, and R. O. Prum, “Theory of the develop-
ment of curved barbs and their effects on feather morphology:
Theoretical morphology of curved feather barbs,” Journal of
Morphology, vol. 277, no. 8, pp. 995–1013, 2016.

[11] D. Kaufman, “STUART LITTLE 2: Let the feathers fly,” in
ACM SIGGRAPH 2002 Courses. ACM, 2002.

[12] T. Rzankowski, “SideFX intern program - feather tools,”
2017, houdini Hive at SIGGRAPH 2017.

[13] B. Levin, “Creating PIPER: Pixar’s latest short film,” in ACM
SIGGRAPH 2016 Talks. ACM, 2016.

[14] D. Seddon, M. Auflinger, and D. Mellor, “Rendertime pro-
cedural feathers through blended guide meshes,” in ACM
SIGGRAPH 2008 Talks. ACM, 2008, pp. 76:1–76:1.

[15] Jeepster. (2015) Bioluminescent macaw. [Online]. Available:
https://blenderartists.org/t/bioluminescent-macaw/638164

[16] A. M. Lucas and P. R. Stettenheim, Avian anatomy : integu-
ment. U.S. Goverment Printing Office, 1972.

[17] C.-F. Chen, J. Foley, P.-C. Tang, A. Li, T. X. Jiang, P. Wu,
R. B. Widelitz, and C. M. Chuong, “Development, regener-
ation, and evolution of feathers,” Annual Review of Animal
Biosciences, vol. 3, no. 1, pp. 169–195, 2015.

[18] F. Zhang, L. Jiang, and S. Wang, “Repairable cascaded slide-
lock system endows bird feathers with tear-resistance and
superdurability,” Proceedings of the National Academy of
Sciences, vol. 115, no. 40, pp. 10 046–10 051, 2018.

[19] M. Yu, Z. Yue, P. Wu, D.-Y. Wu, J.-A. Mayer, M. Medina,
R. B. Widelitz, T.-X. Jiang, and C.-M. Chuong, “The develop-
mental biology of feather follicles,” The International journal
of developmental biology, vol. 48, no. 0, pp. 181–191, 2004.

[20] M. Yu, P. Wu, R. B. Widelitz, and C.-M. Chuong, “The
morphogenesis of feathers,” Nature, vol. 420, p. 308, 2002.

[21] Z. Yue, T.-X. Jiang, R. B. Widelitz, and C.-M. Chuong,
“Wnt3a gradient converts radial to bilateral feather symmetry
via topological arrangement of epithelia,” Proc. National
Academy of Sciences, vol. 103, no. 4, pp. 951–955, 2006.

[22] J. Lin and Z. Yue, “Coupling of apical-basal polarity and
planar cell polarity to interpret the wnt signaling gradient in
feather development,” Development, vol. 145, no. 17, 2018.

[23] D. Cheng, X. Yan, G. Qiu, J. Zhang, H. Wang, T. Feng,
Y. Tian, H. Xu, M. Wang, W. He, P. Wu, R. B. Widelitz, C.-M.
Chuong, and Z. Yue, “Contraction of basal filopodia controls
periodic feather branching via notch and FGF signaling,”
Nature Communications, vol. 9, no. 1, pp. 1–11, 2018.

[24] D. Kao, “Introduction to vector field visualization,” in Proc.
IEEE Pacific Visualization Symposium, Tutorial, 2010.


