
Interactive Point-Based Painterly Rendering

Hiroaki Kawata
Keio University, SFC

5322 Endo, Fujisawa-city, Kanagawa, Japan.
t02282hk@sfc.keio.ac.jp

Alexandre Gouaillard
Creatis Laboratory, Insa de Lyon

69621 Villeurbanne, France
alexandre.gouaillard@insa-lyon.fr

Takashi Kanai
Keio University, SFC

5322 Endo, Fujisawa-city, Kanagawa, Japan.
kanai@sfc.keio.ac.jp

Abstract

Non-photo realistic rendering (NPR) methods have been
proposed for more than ten years in the Computer Graphic
field. Separately, within past few years, several algorithms
for rendering surfaces from their points, or point sets di-
rectly, were proposed. But so far, no NPR like painterly
rendering has been proposed for point sets. In this paper,
we propose an interactive point-based painterly rendering
algorithm. The Interactive frame rate is achieved by using
both a point-based approach to represent the geometry of
the surface and an image-based approach for the render-
ing. Our algorithm achieves interactive rates and outper-
forms mesh-based previously reported results. A by-product
of our work, we also provide a faster, higher quality IBPR
algorithm. We have showed that using most sophisticated
statistical approach, we could improve the rendering qual-
ity.

Index Terms–Point-Based Rendering, Non-photo realis-
tic rendering.

1 Introduction

Non-photo realistic rendering (NPR) methods have been
proposed for more than ten years in the Computer Graphic
field. They enable the utilization of several artistic effects
when visualizing images or 3D scenes. Separately, within
past few years, several algorithms for rendering surfaces
from their points, or point sets directly, were proposed.
Those Point-Based Rendering techniques (PBR) allow one
to visualize bigger models at interactive rates without loss
of quality. They also provide a way to visualize data when
connectivity is not provided. This is the case in reverse
engineering for example. Finally, image-based rendering

techniques are presenting great interest as they represent a
natural LOD and view-dependent optimization of any ren-
dering process. In [7], the authors proposed an Image-
Based Point Rendering (IBPR) algorithm which achieved
interactive frame rate on several hundred of thousands of
points. Their approach was designed for range-images, but
it is suitable for any PBR.

In this paper, we propose an interactive point-based
painterly rendering algorithm. The interactive frame rate is
achieved by using both a point-based approach to represent
the geometry of the surface and an image-based approach
for the rendering. Our contributions can be summarized as
follows:

1. We propose an enhanced Image-Based Point Render-
ing engine (E-IBPR) providing same rendering quality
as IBPR [7] with only one pass.

2. We propose a PCA core algorithm that provides more
accurate parameters (normals of surface and orienta-
tion of brushes...) at different levels of the rendering.

3. We propose a point-based painterly rendering algo-
rithm.

The paper is organized as follows: first, in section 2 we
will present more in details the state of the art in NPR and
PBR. In section 3, we will introduce our new painterly ren-
dering algorithm as a whole. It is based on an enhanced
IBPR (E-IBPR) that we are going to introduce in section
4. A new hybrid (mesh + splat) rendering algorithm is pro-
posed that directly reduces the blurring effect seen with one-
pass IBPR without requiring a second pass. Section 5 will
then details the computation of several features using Prin-
cipal Component Analysis (PCA) instead of usual averag-
ing formula. PCA is applied on the neighborhoods defined



in the E-IBPR. This definition allows one to compute view-
dependent PCA of point sets. It overcomes the time limita-
tions encounter by the author’s work in [5] (using octree).
It also computes much accurately several parameters of the
algorithm like normals and orientation of splat in E-IBPR.
Painterly rendering itself is presented in section 6. Some
results are shown and we will finally conclude in section 8.

2 Related Work

Several NPR approaches exists for both 2D images and
3D geometry. In [4], the author first proposed painterly ren-
dering for 2D image and 3D geometry. They define ”Brush”
as patterns used to modify the appearance of the rendered
image. Depending on the kind of Brush and on the number
of strokes the user want to apply, the rendered image has
a different aspect. Here, the quality of the image is of no
interest, only the effect is important. For 3D geometry, the
Brush’s orientation is determined by normal. This approach
is well suited for user interaction. In [14], the authors pro-
posed a painterly rendering algorithm for 2D images. Their
approach focuses on the automation of the rendering. The
algorithm changes the size, the orientation and the color of
the brush depending on the original image. The brushes
are applied layer by layer. First the big areas are covered
with big strokes, and then the details are added iteratively
using brushes of decreasing size. No corresponding algo-
rithm is provided for 3D geometry. In [10], the authors
proposed a painterly rendering algorithm for 3D geome-
try aiming at animation. They use a particle approach to
achieve the painterly rendering. The surface is randomly
sampled into particles. They use the particles as support for
the geometry. Their work focuses on the aspect continu-
ity of surfaces between frames of the animation. In [8] and
[6], the authors use ”Geograftal” for NPR rendering. They
could achieve several artistic rendering effects that include
painterly rendering, and this approach is suited for edit by
user. In the most recent work on 3D painterly rendering
[10, 8, 6], all the authors are using particles to achieve high
quality painterly rendering. When the surface is available,
it needs to be sampled to get particles. Recently the meshes
are (too) densely sampled. Taking the points directly as par-
ticles without resampling the surface makes sense as several
points are already contained in the volume covered by one
pixel of screen space.

Levoy and Whitted proposed first to use points as render-
ing primitive [9]. Grossman and Dally [3] proposed a PBR
using image-based approach. Using pull-push algorithm
they achieved faster PBR, but the quality is still improvable.
Plister et al. [11] and Zwicker et al. [15] proposed high-
quality PBR. In [11], the authors proposed to use surface
elements (surfels) at the position of points to improve the
quality of the rendering. Surfels can be seen as small primi-

tives (oriented squares or circles) approximating the surface
locally. In [15], the authors extend the notion of surfel to
the notion of Splat. Splats can be seen as surfels whose pa-
rameters (position, color, and orientation) would be more
accurate thanks to the usage of Elliptical Weighted Aver-
age (EWA) in screen space. The representation can also
be made hole-free. QSplat [12] is a more efficient Splat-
ting algorithm. This approach is using multi-resolution data
structure and rectangular or ellipsoidal Splats. In [1], the
authors proposed a hardware implementation of a Splat ren-
dering. In [5] the authors proposed a new PBR which allow
multiresolution rendering with a very high quality. Their
method is unfortunately reported to be very slow.

3 Point-Based Painterly Rendering

In this section we are going to provide an overview of
the complete algorithm. The rendering pipeline is made of
mainly three parts. A first rendering pass using an enhanced
version of IBPR [7] compute a first hole-free representation
of the surface. Our experiments showed that point based
painterly rendering cannot achieve hole free representation
directly. Although that can be interesting for some appli-
cations, it is not desirable in our case. The advantages of
using E-IBPR are numerous: we only need geometry infor-
mation as opposed to connectivity and normal information.
If the original geometry is disturbed by acquisition noise,
the noise is automatically reduced. We can, but are not
obliged to, use additional color information coming from
texture mapping for example. It’s fast. It’s possible to add
alpha blending. The details of E-IBPR are provided in next
section.

It relies on a PCA core algorithm for the computation of
the normal at each pixel. PCA relies on E-IBPR computed
”clusters” for the analysis. The details of this symbiotic re-
lation between E-IBPR and PCA will be explained in details
farther in the paper. PCA also not only compute the normal,
but also the principal directions in the tangential plane. The
results of the first pass (mainly position in 3D space and
color) and the results of PCA (global orientation) are used
by a second rendering pass to achieved various painterly ef-
fects.

Figure 1 illustrates the process of our painterly render-
ing in term of rendering passes. Figure 2 illustrates the
flowchart of the algorithm.

4 Enhance Image-Based Point Rendering (E-
IBPR)

In this section, we describe enhanced image-based point
rendering (E-IBPR). In previous approach the authors pro-
vided a framework for computing Image-based point ren-



final image

second passfirst pass

Figure 1. Process of painterly rendering using
IBPR.

dering. For each frame, their rendering algorithm can be
sketched as follows (for more details, refer to [7]):

1. Compute the size of an image buffer, allocate the mem-
ory.

2. Store original points information to the allocated im-
age buffer.

3. Compute normals and colors for shading.

4. Create faces and magnify the image buffer to the size
of the screen buffer.

Specifically, their definition of point clusters from the
point of view allows one to render point sets in a fast, hole-
free way. The definition of those clusters used as interface
between original point set and for final pixels rendering is
illustrated in Figure 3. As important parameter is the buffer
size / screen size rate s that is computed as follows:

viewportwidth,height =
screenwidth,height

s
, (1)

where γ is a threshold to determine whether a point is
included in a face or not. It is an important parameter espe-
cially for the rendering of multiple range images. We have
set γ as proposed in [7] to 1-3 times the sampling interval
of points. Their approach suffers of mainly two limitations.

IBPR

Painterly
Rendering

PCA

Neighborhoods

Brushes Orientation

Principal Directions

Normals

Point Set

Image Buffer

Final Image

Figure 2. Overview of our algolithm.

First, a blurring effect occurs that is only reduced if using
an extra pass. Then, the computation of parameters for ren-
dering, especially the normals, is of medium quality. This
is a big limitation as the resulting image is very sensible to
small changes in the normal direction.

In this paper we propose one solution for each one of the
above cited problems. We propose a hybrid rendering using
two primitives (mesh and splat) to reduce the blurring effect
directly. We then only require one pass to achieve the same
quality as the previous two passes results. We also propose
to use a more accurate statistical tool: Principal Compo-
nents Analysis (PCA) to compute more accurately the nor-
mals. The PCA core algorithm results are of further interest
than just the normal direction. They are also used during
the final painterly rendering. We will explain in detail our
usage of PCA later in the paper.

The proposed hybrid rendering is using mesh and splat to
render the underlying surface. Mesh is used as a primitive
everywhere but on ”edges” where splats are used. We define
”edges” as regions where the normal is perpendicular to the
view vector. Note that the normal direction thus is of prior
importance for the quality of the resulting image. That is
yet another reason why we needed a more accurate compu-
tation of the normals. This definition of the edges includes
the regions that would be edges in the reconstructed surface
as well as the silhouette. We are improving the rendering of
both of them. As illustrated in Figure 4, on ”edges” we are
placing one splat at each pixel and one splat in the middle
of the pixel. The first four (respectively two splats if sil-
houette) use pixel’s attributes as explained in previous work
[7]. The only difference is that we are forcing the splats to
be behind the mesh by increasing their depth. The splat in



depth

nearest point

view

1 pixel

cluster

Figure 3. The geometric meaning of γ.

mesh mesh+splat
(for each vertex)

all

Figure 4. example of drawing by hybrid prim-
itive.

the middle is using an average of its 4 neighbors for each at-
tribute. We are forcing this one to be behind its four neigh-
bors. Figure 5 compares the rendering result using IBPR
and our E-IBPR. The speed itself is also increased, but as
PCA computation requires more time than averaging, the
frame rate using E-IBPR is approximately the same as with
IBPR.

5 Principal Component Analysis Usage

PCA is a statistical tool that provides good ways to ap-
proximates sets. The PCA analysis of a collection of N
points in a d-dimensional space gives us the mean ν, an
orthogonal basis f , and the variance σ of the data [2] .
The terms ν and σ are d-dimensional vectors and we refer
to their i-th scalar value as νi and σi respectively, with σi

≥ σj if i > j. The basis f consists of (atmost) d vectors
with the i-th vector referred to as f i. Intuitively, we are go-
ing to represent a set a point by an ”entity” that shares the
same statistical properties [2]. More explicitally, the PCA
analysis of a group of points results in an estimate of their
local orientation frame, the mean and the variance along the
different axes of the coordinate frame.

In the work that motivates our usage [5], they keep only
the PCA results and regenerate point sets on demand. In our
case, we focus on determining the principal orientations.
We are using PCA to improve the quality of our rendering
and to compute the orientation of our brushes in 3D space.

(a) (b)

Figure 5. Comparison of the quality of results.
(a) hybrid rendering, (b) mesh rending only.

PCA is the good tool in our case as it provides directly the
three vectors we need throughout the two pass rendering
(one for E-IBPR, and the three of them for painterly render-
ing). We didn’t investigate the compression part, as we are
doing view-dependent clustering on-the-fly. We thus avoid
building a complex data structure and traversing it. How-
ever, we share with the previous work common motivations
for PCA usage. We noted that there is a very high coherence
of points within a cluster. They also noted that ”the accu-
racy required to generate a visually realistic image from a
point cloud could be achieved using statistical methods on
a sparse point representation” even if the statistical method
trade off accuracy against determinism. We are taking this
argument a little bit further using an IBPR algorithm. Intu-
itively, only the features that are going to be visible at the
given screen resolution will be taken into account. It al-
lows us to achieve a high quality rendering of point based
surfaces at interactive rate.

It shall be noticed that even if it was not our original
goal, this represents a good by-product of our work. This
rendering technique combines both advantages from IBPR
and PCA:

• view dependent

• Output optimal

• Multiresolution (changing resolution of the image
buffer used)

• Interactive speed

• Accuracy of the result

• Anisotropy of the result (very important in painterly
rendering for example).

Finally, we show the result of PCA in Figure 6, and we
show the two images which are previous our normal genera-
tion approach and PCA approach result. The PCA approach
could decrease the noise of point set.



(a) (b)

Figure 6. (a): The result using PCA, (b): the
result using the previous approach.

6 Painterly Rendering

Intuitively, brushes can be seen as oriented ”textured
splats”. The painterly rendering algorithm we use as a sec-
ond pass can be sketched as follows for each pixel in screen
space :

1. Get corresponding 3D position,

2. Get color,

3. Get orientation of the brush,

4. Get size of the brush,

5. Compute the ”3D stroke”,

6. Add the 3D stroke to the scene to be rendered.

Once every pixels have been processed, we render the final
scene.

To achieve painterly rendering we need the following
items for each pixel: position in 3D space, orientation of
normal and color. This is provided by the first pass. We
then need the following informations to define the strokes:
brush pattern, brush size, position in 3D space and orienta-
tion. The brush pattern and size are chosen by the user. The
position in 3D space is the position of the pixel currently
processed. Finally the orientation in 3D space is given by
PCA. Note that we are not using the eigen values here. The
original brush pattern is thus not stretched in 3D space. It
will be stretched when transformed into the screen space,
but this is not related to any anisotropy of the underlying
surface, at least in this version of the implementation. In
previous 3D approaches the computation of the orientation
was less accurate (because of particle computation [6], [10])
and / or needed heavy image processing [14],[13].

(a) (b) (c)

Figure 7. Brush images.

7 Results and Discussion

All the reported results were done on Pentium 4 3.20GHz
with 1GB RAM machine. Currently the algorithm has only
been implemented using C++ language and DirectX prim-
itives. We ran our algorithm against Stanford Bunny for
all the main explanations of this paper. We also used big-
ger and more challenging models to prove the efficiency of
our method. Those models are Stanford Happy Buddha and
Stag Beetle model. In Figure 7, we show brushes that we
used for our painterly rendering.

Figure 8 illustrates the difference between IBPR (a),(e)
and painterly rendering(b)-(d), (f)-(h) using different
brushes. Top row uses only the point set, bottom row uses
color information from texture mapping. Figure 9 illustrates
the results obtained using Stag Beetle model, and Figure
10 illustrates the results of obtained using Happy Buddha
model.

The computation times are reported in the following ta-
ble. The screen resolution was 512 by 512 pixel. The value
of s, as defined in section 4 is also provided.

model s points effect time(sec)
Bunny 2.72 362,272 normal 1.11
Bunny 2.72 362,272 painterly 2.31
Beetle 1.91 559,327 normal 1.03
Beetle 1.91 559,327 painterly 2.03

Buddha 1.67 1,274,573 normal 2.11
Buddha 1.67 1,274,573 painterly 4.59

These timed results compares well with [6] in which the
authors reported 425,700 vertices at 1.44 fps on a profes-
sional workstation. Especially our results do not depend on
the input number of points, while [6] report linear depen-
dence on the number of points.

8 Conclusion and future work

We proposed a new painterly rendering algorithm for
point sets. This algorithm achieves interactive rates and
outperforms previously reported results. As a by-product
of our work, we also provide a fast, high quality IBPR algo-
rithm. We have showed that using most sophisticated statis-
tical approach, we could improve the rendering quality.

In the future, we would be interested in investigating the
usage of PCA values directly to reduce the needed band-
with. We think there is an opportunity there to improve the



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Results of painterly rendering (Bunny). (a) : normal rendering. (b) : brush a, (c) : brush b,
(d) : brush c. (e): normal rendering with color information from texture. (f)-(h): painterly rendering
of (e) using the same brushs as (a)-(c).

maximum size of data processed and the speed of the ren-
dering. We are also thinking about proposing an implemen-
tation of the algorithm using graphics hardware to increase
the speed. The final goal being to let the user interact with
the model in real-time, which is not possible with our cur-
rent software implementation.

Acknowledgements

We would like to thank Prof. Kenji Kohiyama for pro-
viding Stag Beetle model.

References

[1] L. Coconu and H.-C. Hege. Hardware-accelerated point-
based rendering of complex scenes. In Proceedings of the
13th Eurographics workshop on Rendering, pages 43–52.
Eurographics Association, 2002.

[2] D. Ebert, F. Musgrave, P. Peachey, K. Perlin, and S. Worley.
Texturing and modeling: A procedural approach. San Diego,
3rd edition, 2002. AP Professional.

[3] J. Grossman and W. J. Dally. Point sample rendering. In
Proc. 9th Eurographics Workshop on Rendering, pages 181–
192, 1998.

[4] P. Haeberli. Paint by numbers: abstract image represen-
tations. In Proceedings of the 17th annual conference on

Computer graphics and interactive techniques, pages 207–
214. ACM Press, 1990.

[5] A. Kalaiah and A. Varshney. Statistical point geometry. In
Proceedings of the Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, pages 107–115. Eurographics
Association, 2003.

[6] M. Kaplan, B. Gooch, and E. Cohen. Interactive artistic ren-
dering. In Proceedings of the first international symposium
on Non-photorealistic animation and rendering, pages 67–
74. ACM Press, 2000.

[7] H. Kawata and T. Kanai. Image-Based Point Rendering for
Multiple-Range Images. In ICITA 2004, 2004.

[8] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev,
R. Barzel, L. S. Holden, and J. F. Hughes. Art-based render-
ing of fur, grass, and trees. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 433–438. ACM Press/Addison-Wesley Pub-
lishing Co., 1999.

[9] M. Levoy and T. Whitted. The use of points as a display
primitive. In Technical Report 85-022, Computer Science
Department, University of North Carolina at Chapel Hill,
1985.

[10] B. J. Meier. Painterly rendering for animation. In Pro-
ceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, pages 477–484. ACM Press,
1996.

[11] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Sur-
fels: surface elements as rendering primitives. In Computer



(a)

(b)

Figure 9. Result of painterly rendering (Stag
Beetle). (a):E-IBPR rendering, (b):painterly
rendering.

Graphics (Proc. SIGGRAPH 2000), pages 335–342. ACM
Press, New York, 2000.

[12] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresoliton
point rendering system for large meshs. In Computer Graph-
ics (Proc. SIGGRAPH 2000), pages 343–352. ACM Press,
New York, 2000.

[13] T. Saito and T. Takahashi. Comprehensible rendering of 3-
d shapes. In Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, pages 197–
206. ACM Press, 1990.

[14] M. Shiraishi and Y. Yamaguchi. An algorithm for automatic
painterly rendering based on local source image approxima-
tion. In Proceedings of the first international symposium on
Non-photorealistic animation and rendering, pages 53–58.
ACM Press, 2000.

[15] M. Zwicker, H. Pfister, J. van Beer, and M. Gross. Surface
splatting. In Computer Graphics (Proc. SIGGRAPH 2001),
pages 371–378. ACM Press, New York, 2001.

(a) (b)

Figure 10. Result of painterly rendering
(Happy Buddha). (a) : E-IBPR rendering. (b) :
painterly rendering.


