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Data-driven Subspace Enrichment for Elastic Deformations with

Collisions

Duosheng Yu - Takashi Kanai

Abstract We propose an efficient data-driven enrichment
approach to adaptively enhance the expressivity of subspaces
for elastic deformations with novel collisions. In general,
subspace integration method (also known as model reduc-
tion) for elastic deformations can greatly increase simulation
speed. However, when the deformations are beyond the
expressivity of subspaces such as novel external collisions,
obvious artifacts will appear. First, we construct a position-
based database of subspaces through full-space collided sim-
ulations. We then select small sets of basis vectors to enrich
existing subspaces for incoming collided deformations. We
also demonstrate that cubature can easily be exploited by our
subspace database, and we propose a novel post-processing
scheme for refining the cubature weights for more accurate
and faster deformations. Our method can achieve well
approximated full-space deformations when novel collisions
occur. From our experiment results, we further show that our
method is applicable to large deformations and large-steps in
real-time.

Keywords Elastic deformation - Subspace - Collision -
Cubature

1 Introduction

The simulation of deformable elastic objects is becoming
more and more important for films, computer games, virtual
environments and related fields. Among the methods of
deformable elastic object simulation, the Finite Element
Method (FEM) is widely used, due to its versatility in
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representing objects and diverse materials. However, since
full-space FEM simulation is required to calculate internal
forces and force differentials of all 3D volumetric elements,
it is too expensive to use FEM to simulate high resolution
deformable objects in real-time.

To address this issue, the subspace integration method,
also known as model reduction, uses pre-computed basis
vectors to project the original high-dimensional system into
the low-dimensional space spanned by those bases. For this
reason, the simulation of the subspace system only depends
on the number of basis vectors which is much smaller than
the original full-space system, enabling high simulation
acceleration to be achieved. However, the expressivity in
subspaces is also considerably smaller than that in full-
spaces. Especially when novel collisions occur, simulations
in subspaces always cause unrealistic artifacts due to the
lack of expressivity. The purpose of our work is to solve this
problem.

Previous approaches which attempt to solve this problem
mainly fall into two categories. One combines full-spaces
and subspaces into one object, while the other attempts to
add more basis vectors to existing subspaces to capture the
collided deformation which is going to occur. The former
approach can achieve more accurate results but the benefits
of subspaces are lost, since the collided deformation in this
approach is actually simulated in full-spaces. Our basic idea
is based on the latter approach. State-of-the-art approaches
however use analytical solutions of displacement as addi-
tional basis vectors which are limited to small deformations
and small time-steps.

In this paper, we propose a novel method which can
overcome these limitations and is efficient for interactive
applications (see Figure 1). Our idea here is to enrich the
expressivity of the subspace for collided deformation using a
subspace database. This idea is based on the observation that
when the same rigid object collides near a specific position
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Fig. 1: Two planes push the ears of cheb. Our subspace
simulation fully running at 64 fps, and 310x speed up
compared with full-space simulation can be achieved.

on an elastic object, under the situation that a rigid object
moves straight at a constant speed, the resulting deformations
are very similar. If we have the bases that span the space
of incoming collisions, we can simulate this deformation
in subspaces that well approximate those in full-spaces.
For collisions that occur not exactly where we train our
database, we use an interpolation scheme to generate new
basis vectors. For the purpose of real-time simulation, our
method also exploits cubature - a fast evaluation method
of subspace internal forces and their differentials. However,
unstable artifacts occur with the original cubature approach.
We also propose a cubature weights refinement method to
solve this problem.

2 Related Work

Subspace integration methods were first introduced to de-
formable object simulation by Pentland and Willams [14],
but were applied only for linear materials. James et al. [9]
used precomputed bases of modal analysis to efficiently
simulate dynamic deformation of muscles in character
animation. Hauser et al. [8] showed that subspace modal
framework can easily be coupled with external constraints
such as manipulation, collision, etc. Barbi¢ and James [2]
presented modal derivatives for fast subspace integration of
reduced nonlinear St. Venant-Kirchhoff material. Subspace
integration methods are proven to be effective for many
graphics applications, such as shape interpolation [21],
skinning character dynamics [22], animation editing [3, 13]
and fluid simulation [19].

A variety of approaches have been proposed to address
the expressivity limitation issue of subspace. Barbic et al. [4]
and Kim et al. [12] used multi-domain technologies. The
basis vectors usually have global support, so the object is
partitioned into several connected domains and subspace
simulation is performed for each sub-domain to localize the
influence of basis vectors. Harmon et al. [7] used analytic
solution to calculate additional bases restricted to small
deformations and small time-steps. In contrast, our additional
bases are computed using full-space simulation data, which

are independent of the scale of deformations. Kim et al. [11]
proposed error estimation for subspace simulation, detecting
when a subspace is capable of performing the next time-step
and switching to full-space simulation when the expressivity
of subspace is not enough. Teng et al. [ 18] combines subspace
and full-space at the same time. In contrast, our method can
fully run in a subspace, which results in consistent run-time
speed and achieves faster frame rates.

For data-driven subspace integration methods, as far as
we know, the only work is by Hahn et al. [6], who constructs
a subspace database for cloth simulation. However, their
approach cannot be used for collided elastic object simulation
directly. They perform full-space simulation for character
animations and construct a pose-based subspace database
of cloth motions. Since character’s motions are limited,
only a small amount of bases are needed in their situation.
In contrast, our position-based database contains a large
amount of bases created by doing a lot of full-space collided
deformations. Moreover, their approach needs to evaluate
full-space internal forces and stiffness matrices, avoided by
using cubature.

Cubature proposed by An et al. [1] is a method that fastly
evaluates both reduced forces and reduced stiffnesses based
on subspace. Cubature can reduce the cost of evaluating
subspace forces from O(y*) to O(y?), where y is the
dimension of subspaces. To compute such cubature elements,
there is a need to solve the best subset selection optimization
problem. An et al. [1] use a greedy scheme that builds a set
of cubature elements incrementally. Von Tycowicz et al. [20]
substitute greedy scheme by a Non-Negativity-constrained
Hard Thresholding Pursuit (NN-HTP) algorithm to achieve
faster converge and better accuracy. Besides elastic object
simulations, cubature has successfully been applied to other
applications such as fluid simulation [10].

3 Subspace integration method and Enrichment

We use tetrahedral meshes for FEM deformable object
simulation. Given a tetrahedral mesh with N vertices, the
deformation u € R3V is the displacement of vertices away
from the rest configuration X of mesh in world coordinates.
The quasistatic equation that governs the motion of a
deformable object can be written as:

K(u)Au = fim‘(u) +fext7 (1)

where K € R33N s the material stiffness matrix of the
object, finrs fexe € RPN is the internal force and external
force of this object respectively. A also means the increment
operator.

Subspace integration method is used to accelerate the
solution of Equation (1). The original high-dimensional
system is projected to a customized low-dimensional system
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by a basis matrix U € R as shown by the following
equations, where y (y <« 3N) is the dimension of this
subspace:

Ku)=UTK®u)U,
}int(u) :UTfint(u)’ 2)
}ext :UTfext'

The original 3N high-dimensional equation then be-
comes y low-dimensional equation:

I_{(u)Aq = jim(”) + jext’ (3)

where Aq is the reduced increment of displacement. After
solving Aq in the subspace, Au is calculated by projecting
Agq back to the full-space:

Au =UAq. 4

Subspace basis matrix U can be computed by a variety of
standard methods, such as modal analysis [15], modal deriva-
tives [2], modal extension [20], etc. Subspaces computed by
those methods have good global support.

The affine space of the subspace matrix U can be
considered to be the linear combination of basis vectors in
U attached to the undeformed configuration of an object.
Adding more basis vectors to U means adding more combi-
nations of bases, and this can make the affine space express
a more variety of deformations, and then any proper subset
of precomputed basis vectors can be chosen for run-time
simulation.

The Enriched subspace is defined as [7],

U =[G L] e R*N*0+),

where G is the original y global basis matrix created by the
standard method to support global deformation. By contrast,
L is an additional local basis matrix and contains s bases
for enriching the affine space of our run-time subspaces. The
projection of subspaces then becomes,

T T
R(w) =UTK@)U = [i’}gg frﬁ] )
- T .
Find0) =UT fota) = | Frpim). ©®

Other variants can be projected by the same way.

4 Data-driven Subspace Enrichment
4.1 Our collision setting and basic idea

By constructing L described in Section 3, certain deforma-
tions of collision for an object can be retrieved appropriately.
However, it is quite difficult to construct L which can be used
for any type of collided deformations.

rigid object

moving direction

collided point

Fig. 2: Our method for setting a colliding rigid object to an
elastic object.

We then focus on a simple collided deformation to
construct L. That is, we consider the situation where a rigid
object collides to an elastic object as illustrated in Figure 2.
A rigid object is moved along the inverse direction of the
normal vector of a point on the surface of an elastic object at
a constant speed and is collided at such a point. We call this
point collided point.

In this situation, the results of our experiments revealed
that two Ls, which are calculated from collided deformations
at two very close collided points, have similar basis vectors.
Conversely speaking, by using L constructed from a collided
deformation at a certain collided point, motion at a point
close to that point can be approximated.

This fact contributed to our idea as follows: We calculate
a lot of collided deformations at different collided points on
the surface of an elastic object and store Ls in a database.
Then we can approximate a collided deformation at any
collided point by using a new local subspace interpolated
from Ls at several nearby collided points.

4.2 Overview of our method

Figure 3 shows the visual pipeline of our method. Here we
briefly describe each stage of our system.

Pre-computation. The input of our system is a tetrahedra
mesh of a deformable object the user wants to simulate and a
rigid object that creates collisions. Furthermore, we assume
that some regions where typical collisions may occur during
run-time simulation are provided. We refer to those regions
as predict-region.

In the pre-computation, we first compute our global
subspace G using modal analysis. We also sample a set
of vertices on the predict-region as collided points for the
training stage. At each collided point, we then perform full-
space simulation with colliding a rigid object to deformable
object along the inverse direction of the normal of such a
point, as described in the previous subsection. The resulting
deformation is thus associated with the corresponding point.



Duosheng Yu, Takashi Kanai

Global subspace G

Position-based database [

{c;,iﬁ@ ;;;,}mJ Weights
\7;77&777/ W', \\\

\E

Input: Collided position p

l [LOC;] sﬁ:;r;ace

Output: Nearest Ls and w's

Full-space simulation
at collided points p,

Pre-computation

S Cubature
| elements &~

=

Nd——

Run-time simulation

Fig. 3: Overview of our system.

For each motion, we compute a local subspace L and
cubature weights w’, and store them to a database. We will
describe the database construction method in Section 4.3 and
cubature weights refinement in Section 4.4.

Run-time simulation. In run-time simulation, collision de-
tection is performed for each frame. If collision does not
occur, we simulate an object without using local subspaces
from the database, but with the global subspace only. If
collision occurs, we specify a hit point on the surface of
an elastic object, and search nearby collided points and
their associated Ls and w’s. We then construct L and w
respectively by interpolation and use them for retrieving
collided deformation. We will describe the detail of the run-
time process in Section 4.5.

4.3 Position-based database construction

Subspace database is responsible for providing low-dimensional

local subspace L for real-time simulation that can well
capture the incoming collided deformations of the elastic
object. We first have to decide how to train our full-space
collided deformation data and how to process these data to
extract the information we need. We also have to find a way
to associate data with the collided deformations. At the initial
state, we only have undeformed configuration of the object.
Our database should be adaptive for regions where the user
predicts collisions will occur at run-time on an elastic object.

Here we construct a database named as position-based
database L = {(p;,L;,w))}(i = 1...N,) where N,, is the
number of collided elements. Each element is a triplet of
parameters, where p; is the collided point on the surface
of an elastic object, L; is the local subspace of collided
deformation at p;, and w l’ is a set of cubature weights for
this deformation. Namely, L; and w are associated with p;.
So in run-time simulation, p; is used as a key to search L;
and w. That is, when we perform collided simulation at a
hit point p, we find nearest points p; from the database and
obtain the corresponding L; and w.

We first sample points uniformly distributed in the
predict-region where collisions will occur. To do this, we

can use the geometry analysis tools such as Monte Carlo
sampling and Poisson-disk sampling. These sampled vertices
are used as collided points p;. The number of sample points
is independent from the resolutions of a tetrahedral mesh
and is determined by a geometric parameter (e.g. a Poisson
disk radius). Note that the predict-region can be specified by
the user and does not necessary have to be the entire surface
of an elastic object. Figure 6 shows the resulting vertices of
Poisson-disk sampling on a capsule-shaped object. We then
perform full-space simulation by colliding a rigid object to
the elastic object at each collided point.

After the training stage, use of the deformations of all
frames as our local subspaces will result in a massive amount
of data that is impractical to reuse. We thus prefer to use a
small amount of data that well captures the deformation. On
the other hand, constructing small bases from all training data
by PCA or other data processing algorithms will eliminate
the locality of training data. Our choice here is to compute
local bases for each training data of collided deformation
at a collided point. Thus our seperately computed bases are
distributed across our collided points.

Our method aims to capture several keyframes for a
motion. We extract m keyframes at equal intervals from
a collided deformation (see Figure 4). A set of keyframes
and local subspace of a motion i are then defined as
X;i = {uy,uy,...,u,} and L; respectively. The number
in subscripts of u indicates a chronological order of this
deformation.

Fig. 4: Three key-frames of a collided deformation.

For the computation of bases, we use the method in [21].
We first calculate the affine space which linearly spans this
deformation using the displacement between keyframes.

up —up_; subjectto ke {2,3,...,m}. 7
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These displacements represent the deformation of this mo-
tion. We add all resulting m — 1 vectors to a local subspace
Li-

We also compute the derivatives of all these key-frames.
The derivative of a configuration with respect to another
configuration is a vector in R3V. As discussed in [21], all
derivative vectors of a keyframe configuration linearly span
a m — 1 subspace that best approximates other keyframe
configurations. We can regard this affine space as the tangent
space at keyframe configuration u;.

The derivatives are calculated by solving the following
equation:

K(u;)D;(u;) = F j(u;), ®

where K(u;) is the tangent stiffness matrix in configuration
u;, Fj(u;) is the internal force deforming u; into u;, and
D;(u;) is the resulting derivatives. We do this for all key-
frames, so the resulting tangent subspace has m X m — m
vectors. We finally add all these vectors to L;. Totally, L;
will contain m? — 1 vectors.

Algorithm 1 Database Construction.

Input: Tetrahedra mesh, rigid object and predict-region
Output: Position-based Database £
1: procedure DAaTABASE CONSTRUCTION

2: Sample collided points in predict-region;
3 L={}
4 for each collided point p; do
5: Do full-space collided simulation at p;;
6: Capture m key-frames X; = {u1, 2, ..., U, };
7: L;={}
8: fork =2,3,...,mdo
9: Li —L;U{up—ur1};
10: end for
11: forj,k=1,23,...,m;j # kdo
12: Solve K(uy)D; = F j(uy);
13: Li <—LiU{Dj};
14: end for
15: end for
16: Compute cubature elements C using all key-frames
{X1, X, .. )
17: for each collided point p; do
18: w', < WEIGHTs REFINEMENT(C, Xj, L;);
19: L — LU{(pi,Li,w))};
20: end for

21: end procedure

The construction of the database is listed in Algorithm 1.
After we collect the difference vectors and the derivative
vectors of a deformation to L;, a truncated PCA over
each local subspace L; to orthogonalize this local basis is
optionally used, then the size of database can further be
reduced.

4.4 Cubature weights Refinement

In this subsection, we first describe the problem which occurs
when applying the original cubature to our subspace database
and then describe how we solve this problem to make the
cubature suitable to our subspace database.

Cubature is a method that uses a small number of key
elements to approximately evaluate both the reduced internal
forces f;,, (1) and reduced stiffness matrix K (u). We denote
C, w as a set of original cubature elements and their weights
respectively, then

Fim(u) = Z WiUiﬁm(u)’ 9)
ieC

K@) ~ Z wUTK,U,, (10)
ieC

where w; is the weight of cubature element i, and U;, fi-m, K;
are the bases, internal forces and stiffness matrix of cubature
element i respectively.

We use Non-Negativity-constrained Hard Thresholding
Pursuit (NN-HTP) algorithm [20] to determine cubature
weights. In the training stage, we have trained a lot of col-
lided deformations, thus all key-frames of all deformations
{X1, Xy, ...} which we used to compute basis vectors are
naturally chosen as the samples for the training of original
cubature.

However, we found that the original cubature makes
unstable simulations as shown in the left of Figure 5. In the
run-time simulation, we hope that our cubature weights can
well capture the incoming collided deformation. Since we
train cubature weights using deformations at all of collided
points. The subspace internal force of element i in NN-HTP
is calculated by f;,,(w) = U'f! (u) with U = [G], but
U =[G L] is used in our run-time simulation. The resulting
cubature loses the locality of each deformation. Thus the
resulting cubature will contain a lot of unrelated but non-zero
weights, yielding large error for the evaluation of reduced
internal forces.

Our solution here is to refine weights based on original
cubature elements. We have to find unrelated elements, and
set their weights to zero (elements with zero weight values
do not need to be evaluated), and change other non-zero
weights to make them more suitable for a specific collided
deformation. To this end, our refined weights are more
suitable for specific deformations and can achieve faster
frame rates as shown in the right side of Figure 5. Our ingre-
dients for refining weights are the m key-frames components
{uy,uy,...,uy} of acollided deformation, global subspace
G and corresponding local subspace L. The internal force
for a cubature element is calculated by

Fim@ =[G LY fi,,(u), (11)
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Refined.

Original.

Fig. 5: Our refined cubature weights solve unstable artifact
and achieve faster frame rate at 195 fps than the original at
39 fps.

where [G L]’ is the corresponding part of cubature element
i in subspace [G L]. This makes the reduced internal forces
more suitable for this local collided deformation. We assume
that C contains o elements. A new set of weights w’ is then
computed by solving a Non-Negative Least-Squares (NNLS)
problem:

Aw’ =b subjectto w’' >0, (12)
where
[ -Z’Ll'nt(ul) -Z'Z')nt(ul)
Wfine @Dl W ine @l
A= : :
zint(MM) fj:)nt(MM)
L{1f i @) S ine @m)l] (y+s)mxo
[ fin )
[ ine @)l
b= :
L ine@m)
LI e @n) |1 ) (4 5)m

We refine weights for all collided deformations using Al-
gorithm 2. The output is a set of cubature weights {w/}
associated with each collided point.

4.5 Run-time process

Once a position-based database is constructed, the remaining
question is how to select proper local subspaces at run-time
simulation. This subspace should be low-dimensional and
well capture the incoming collided deformation.

One possible solution is to compare the current state
with the vectors in the database using evaluation metrics
such as L2 norm, then gather a constant number of vectors

Algorithm 2 Cubature weights refinement for a deformation.

Input: A setof key-frames Xj, local subspace L; and original cubature
elements C.
Output: Refined weights w’;
1: procedure WeiGHTs REFINEMENT(C, X;, L;)
2: for each key-frame in a set do

3: Compute f i—m (u) of cubature elements in C using Equation
(11);

4: Computefim(u) using Equation (2) withU = [G L;];

5 end for

6: Assemble matrix A and vector b;

7 Solve Aw’; = b for refined weights w’;

8 return w;.;

9: end procedure

that best approximate the current state to construct our run-
time subspace. However in our experiment, we found that
this solution is not practical. Since our database contains a
large number of basis vectors, updating the subspace in each
time step will take too much time. Also, updating a subspace
with a regular interval frame will result in a discontinuous
subspace which makes the simulation unstable.

In the case of the subspace cloth simulation proposed
in [6], the basis vectors in the database is aligned to the full-
space internal forces of the current configuration of cloth
and the projected length is scaled in the inverse distance.
Several bases with the longest length are selected. However
with their method, full-space internal forces of an object have
to be evaluated, thus it does not fit our situation. We want
to simulate the collided deformations as fast as possible.
Moreover, we use the cubature scheme, and only evaluate
subspace internal forces in our run-time simulation.

For these reasons, our current solution chooses to select
several whole subspaces L; according to the position where
collision occurs in run-time simulation. In the training stage,
we associated each local subspace with a collided point.
When collision occurs, we search collided points from the
position where collision occurs. Next, we select the m closest
collided points and the corresponding L; for our run-time
subspace.

We then interpolate these subspaces to create a run-time
local subspace:

L= (L (13)
i=1

where £(d) is a weight function taking the distance between
collision position and selected collided points as the input,
and a Gaussian kernel function or any other types of kernel
functions can be used for such a weight function.

The selected subspaces of collided points are very close
to each other and are constructed in the same space. For
the construction of a local subspace, the same algorithm
(Algorithm 1) is used which makes the same sorting order
of basis vectors in local subspaces, i.e. each basis vector in
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a local subspace corresponds to that in other local subspace.
So no post-processing is required before we interpolate them.

In run-time simulation, the weights are also selected
in the same way as local subspaces and we use the same
interpolation scheme to interpolate the weights as local
subspace does:

w= (14)

{(dyw.

M

1l
—_

5 Results and Discussion

All our simulations run on a desktop PC with Intel® Core™
i7-4790 3.60GHz CPU and 32GB RAM. We use the co-
rotational material introduced in [16] and implicit Euler
time discretization for all our experiments. In full-space
simulation, we used a conjugate gradient method to solve a
large sparse linear equation, and in subspace simulation LU-
decomposition is used to solve a small dense linear equation.
Poisson-disk sampling by [5] with different radii are used to
create sampling vertices (based on the average length r of
edges of objects) as collided points. The resulting vertices
are tightly packed, but not closer to each other than Poisson
disk radius. In the training stage, we perform full simulation
with 60 frames for all collided points and capture three key-
frames for computing local subspaces. For cubature training,
we use NN-HTP algorithm [20] with a fitting error value
being 0.05. For the run-time simulation, we use the method
in [17] for collision detection and select four local subspaces
using the k-nearest neighbors algorithm.

Capsule. We first test our method on a capsule-shape mesh
with 5,312 vertices and 18,604 tetrahedra. We manually
specify the top region of the capsule as the predict-region.
We use another cylinder as a rigid object to create database
at collided points as shown in Figure 6.

Fig. 6: Sampling vertices (collided points) for capsule created
by Poisson-disk sampling with a constraint value being r.

Figure 7 shows the comparison results of full-space
simulation with subspace simulations of previous methods
and ours. In these experiments, we randomly chose three
collided points on the predict-region. It can clearly seen that
our method can well approximate the full-space simulation
compared with other methods. In contrast, subspace integra-
tion method with G only cannot approximate the full-spae

simulation since using only global subspace G cancels the
local feature of collided deformation. In the result by [7],
the corresponding local feature is well represented, however,
several unrelated places are also deformed together.

Full-space with rigid cylinder

L X—— X

Full-sapce without rigid cylinder

b X

Subspace with G only

oD ==

Subspace with G + analytical L

Y —— N

Subspace with G + L from database (ours)

Fig. 7: Comparisons of full simulation with previous methods
and ours. From top to bottom rows: full-space simulation
with rigid cylinder (in yellow), full-space simulation without
rigid cylinder, subspace simulation with G only, subspace
simulation with G+ analytical L in [7], and subspace
simulation with G + L from database (ours).

Moai. We also test our method on a moai-shape mesh
with 12,354 vertices and 45,102 tetrahedra. We manually
specify the middle region of the moai as the predict-
region. To evaluate the relationship between the size of
database (determined by the Poisson-disk radius r) and
the approximation errors, we have created three databases
according to different Poisson-disk radii. Figure 8 shows the
display results of collided points with different Poisson-disk
radii r,2r,3r, where r is the average length of edges in a
mesh. We name such databases with different Poisson-disk
radii as database r (DB r), database 2r (DB 2r), and database
3r (DB 3r) hereafter.

To evaluate our results, here we use L2 error between
displacements of full-space simulation results and those of
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Fig. 8: Collided points (in red) with different Poisson-disk
radii r, 2r,3r, where r is the average length of edges in a
moai mesh.

‘ Obj ‘pOS ‘ DB ‘ &£20 ‘830 ‘840 ‘ &350 ‘
r 0.103 | 0.463 | 0.796 | 1.046
1 2r | 0.087 | 0.528 | 1.025 | 1.433
moai 3r | 03 0.558 | 0.970 | 1.326
r 0.28 0.587 | 0.826 | 0.98
2 2r | 0.375 | 0.578 | 0.780 | 1.059
3r | 0469 | 0.865 | 1.294 | 1.87

Table 1: L2 errors of collided deformations at two hitted
points for 20" frame (&59), 30" frame (£30), 40’ frame
(£40) and 50" frame (g50) with different databases.

subspace simulation results measured in R3V,
T i
& = ||ufull _umb”Z, (15)

where u’. . is the displacement of the i frame in full-space

full
simulation, and #* , is the corresponding displacements in
sub

the subspace.

We randomly pick up two hit points for the run-time
simulations. The results of run-time collided deformations
with such two hit points are shown in Figure 9, and the L2
errors for several frames are shown in Table 1. It can be seen
that better results are achieved with database r than others.
Denser collided points make the collided point in the run-
time simulation closer to the collided points in the database
and at a higher probability. Therefore, a database with more
dense collided points yields good approximation to the full-
space simulation result. It can also be seen that the error
increases as the frame number increases. This is because
errors are accumulated as the simulation progresses.

Cheb. We construct two orthogonal local subspaces L; and
L, for a cheb object which contains 11,989 vertices and
43,813 tetrahedra. They are created from full-space collided
deformations by using a plane rigid object to push cheb’s
left and right ears respectively. In the run-time simulation,

we simulate a scene of two planes pushing the left and right
ears at the same time using the subspace U = [G L L;] as
shown in Figure 1. The result shows that multiple collisions
are also possible with our method in cases where two collided
deformations do not affect each other.

Statistical results. We list the statistical results for pre-
computation and performance for run-time simulation in
Table 2. At the run-time simulation, we measure the average
frame rate for all frames. Though more denser collided points
result inachieve bettermore approximated results, the size of
database is also larger and pre-computation will take more
time.

Our weight refinement method for cubature elements
provides good approximation to full-space simulation. As
shown in Figure 10, the fitting errors of our weights are
smaller than the original weights. Furthermore, since the
original cubature takes all keyframes of local deformations
as input, the resulting cubature elements take all local
deformations into account, i.e. contain unrelated elements for
each local deformation. Our refinement can set the weights
of such unrelated elements to zero. As a result, our refined
weights contain 81% — 97% zeros which do not need to be
calculated, and our method thus becomes faster than using the
original weights. Consequently, our method is 99 faster than
full-space simulation with a capsule database and 98 — 131x
faster with moai databases.

Limitations. We proposed an efficient database method
that resolves the problem of artifacts when deformation
exceeds the expressivity of subspaces. However, there are
several limitations in our method. First, like other data-driven
methods, our method cannot capture the local deformation
outside the region as we have not trained it for local
deformation. Secondly, our database is most suitable for
the shape of rigid object used for creating this database.
The other rigid objects with different shape may result
undesired deformations. Thirdly, the size of our database
becomes very large because there are too many collided
points or the resolution of a mesh is very large. Finally, our
method assumes simple situations where a straightly-moving
rigid object collides into an elastic object when constructing
a subspace database. Therefore, the real-time simulation
may produce unexpected deformations when situations are
outside such assumptions, i.e. the direction of collision of
rigid bodies changes during simulation, etc.

6 Conclusion and Future Work

In this paper, we propose a scheme that achieves well-
approximated local deformations of collided deformable
simulation using a carefully-constructed subspace database
to enhance the expressivity of existing subspaces. Our
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Position 1
Position 2
Full-space DB r DB 2r DB 3r
Fig. 9: Comparison of results with different dense collided points.
| obj | d-ctr | s-vtx | tn-t | bt | DB-s | cub-t | cubs | rw-t | rt-f | rt-w [ rt-rw | sp-w | sp-rw |
capsule r 417 11302s | 1147s | 361MB 111s 395 85 3.5 | 135 | 348 38x 99x
r 726 38994s | 4660s | 1055MB | 2731s | 2712 | 298 | 1.7 | 34 167 20x 98x
moai 2r 354 23461s | 2126s | 515MB 3180s | 2975 | 204 | 1.4 | 31 184 22x 131x
3r 193 10579s | 1169s | 280MB 534s 2235 | 111 1.7 | 40 190 23x 111x

Table 2: Simulation statistics of our database. From left to right: Poisson-disk radius (d-ctr), the number of collided points
(s-vtx), time for training collided deformations (tn-t), time for basis computation (b-t), database size (DB-s), time for cubature
training (cub-t), resulting number of cubature elements (cubs), time for refining cubature weights (rw-t), average frame rate
(fps) of full-space (rt-f), average frame rate of our subspace without refined cubature weights (rt-w), average frame rate of
our subspace with refined cubature weights (rt-rw), speed up rate without refined weights (sp-w) over full-space simulation,
speed up rate with refined cubature weights (sp-rw) over full-space simulaiton.

05

m

i

Fig. 10: Fitting errors measured using our capsule database.
The horizontal axis shows the index of sampling vertex, and
the vertical axis shows fitting error values. The green bar
shows the values of original cubature weights, and the blue
bar is those of our refined weights.

database is position-based which can capture more details
for a deformation than pose-based. The experimental results
show that our method achieves the deformation that well
approximates full-space simulation. With position-based se-
lection, we can keep the simulation in a very low-dimensional
subspace. Furthermore, we refine original cubature weights
for sparse collided deformations, thus making cubature more
suitable for our local subspace database and realizing faster
performance. These advantages make our scheme well-
suited for real-time applications that involve collisions of
deformable objects such as video games, surgery simulation,
etc.

There are several aspects that we should consider in our
future work. First, geometric properties of simulation meshes
should be considered in the creation of collided points. In
the region where curvature changes drastically, more collided
points must be created. In addition, only a single rigid object
is used to collide in our current scheme, and we plan to
combine different databases and use different rigid objects
to collide elastic objects at the same time. Moreover, we
are also considering reusing subspaces for simulating local
deformation and for different regions.
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