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Figure 1: We present a novel learning-based method for automatically generating detail-aware deformations for diverse garments worn by
different body shapes in arbitrary poses. Through our method, the model can easily make reasonable approximations for individualized
deformations caused by different attributes.

Abstract
This paper presents a novel learning-based clothing deformation method to generate rich and reasonable detailed deformations
for garments worn by bodies of various shapes in various animations. In contrast to existing learning-based methods, which
require numerous trained models for different garment topologies or poses and are unable to easily realize rich details, we use
a unified framework to produce high fidelity deformations efficiently and easily. Specifically, we first found that the fit between
the garment and the body has an important impact on the degree of folds. We then designed an attribute parser to generate
detail-aware encodings and infused them into the graph neural network, therefore enhancing the discrimination of details
under diverse attributes. Furthermore, to achieve better convergence and avoid overly smooth deformations, we proposed to
reconstruct output to mitigate the complexity of the learning task. Experimental results show that our proposed deformation
method achieves better performance over existing methods in terms of generalization ability and quality of details.

CCS Concepts
• Computing methodologies → Neural networks; Animation;

1. Introduction

Clothing animation is a fundamental topic in computer graphics,
aiming to generate realistic clothing deformation effects for many
applications including virtual try-on, video games, and films. With
the progress of the graphics field, users are paying more attention
to the visual effects of garments, including how they interact more
realistically with the body and how wrinkles increase or decrease
with different movements. High-quality clothing deformations pro-

vide users with convenience during online shopping or provide an
immersive experience for entertainment.

To meet the needs of producing high-quality clothing anima-
tions, predominant approaches are based on physics-based simu-
lation [NSO12,NMK∗06]. Despite the convincing effects provided
by these methods, deployment to real-time applications is still chal-
lenging due to the high costs of computer simulation process.

To overcome high computational costs and simplify the defor-
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mation process, learning-based solutions [dASTH10] are proposed
to approximate clothing deformations according to relevant influ-
encing factors (e.g., motion and shape of the body). While these
methods can roughly imitate the behavior of clothing animation,
there still remain issues in terms of generalization and quality of
details.

Most state-of-art learning-based studies [SOC19, PLPM20,
TBTP20] adopt multilayer-perceptron (MLP) models to predict the
nonlinear deformations of garments. Although the predicted results
contain plausible wrinkles, the trained model cannot generalize to
new garments because both input and output are vectors of re-
stricted size (usually related to the number of vertices), resulting
in the training and test targets being forced to have the same num-
ber of vertices. Even though a constant mesh topology with style
parameters [PLPM20] can cope with different garments, it cannot
represent fine details with reasonable mesh resolution when the de-
formation targets are highly variable (e.g., extremely long and short
garments, or t-shirt and jacket). Furthermore, because of the limited
ability of MLPs to understand 3D information, a great number of
parameters is usually required to realize the deformation approxi-
mation for specific mesh topologies. On the other hand, solutions
based on graph neural networks [CMM∗20, GCP∗22] can effec-
tively address the generalization limitation of MLPs, as their in-
put and output are 3D mesh features and the trained parameters
are independent of the mesh topology and the number of vertices.
However, the approximated garments tend to be overly smooth and
lack rich wrinkles [GCS∗19]. To enable realistic clothing defor-
mations, existing graph learning-based research [VSGC20] has to
trade pose-variation for realism, which only predicts the deforma-
tion in t-pose.

The main reason why learning-based methods for clothing ani-
mation need to weigh the above aspects is: the extreme complexity
of the fine deformation prediction of garments in multiple states
(under various postures, worn by various bodies, etc.). Our method
essentially overcomes this “complexity” and uses one framework
to efficiently generate high-quality deformations with fine details
(see Figure 1). Deformations can be approximated in two steps: 1)
learn a model to globally drape the garment on the target body in
a certain pose, 2) learn an additional model to produce the high-
frequency wrinkles based on the corresponding coarse deforma-
tion. The overview of the method is shown in Figure 2. Specifically,
our technical contributions are three-fold:

• To account for complicated and irregular detailed wrinkles, we
first discuss that the fit between the garment and body influences
the degree of wrinkles: loose clothes have smoother, sparser, and
wide wrinkles, while tight clothes have thinner, denser, and nar-
row wrinkles. Therefore, we parametrize the relationship and
propose the fit parameter, which is regarded as one of the at-
tributes.
• To make the model generalized and effectively map relevant

influencing attributes (i.e., fit, body shape, and pose) to defor-
mation details, we design an attribute parser to generate detail-
aware encodings and then infuse them into the graph neural net-
work. This infusion maps the original graph features to represen-
tative features that are adaptive to the corresponding attributes,

providing a meaningful signal to the model and learning realistic
deformations in a detail-aware manner.
• To facilitate the deformation learning and achieve high-quality

predictions, we address complexity fundamentally from the
novel perspective of output reconstruction. Existing studies al-
ways directly output the three-dimensional vector (position or
displacement) of each vertex where the value of each dimension
ranges from negative infinity to positive infinity, which makes it
difficult for the training to converge to a reasonable range and
the prediction results tend to be overly smooth. To address this
problem, we decompose the output vector as the combination of
magnitude and direction where the value range of the magnitude
is greater than zero and the value range of the direction is from -1
to 1. This strategy plays a crucial role in the learning of fine de-
formations, since it greatly reduces the range of output variables,
thereby mitigating the complexity of the task.

To the best of our knowledge, our study has been the first to
enable unified models to realize detail-aware deformations for gar-
ments with various mesh geometries worn by diverse body shapes
in any posture. Our experiments confirm that our proposed method
outperforms existing clothing animation methods in terms of gen-
eralization and deformation quality.

2. Related Work

In this section, we first discuss existing clothing animation methods
by classifying them into physics-based simulation and learning-
based models. Then, we also introduce the latest investigations on
learning-based deformation.

Physics-based simulation. Pioneering studies achieve realistic
clothing animations based on geometric constraints [LC04,SSIF09,
RPC∗10], however, they always suffer from instability and high
computational cost. In order to make the simulation efficient, re-
search in [MC10] computes wrinkles by a static solver and adds
them on the coarse base mesh. As a similar idea on adding fine de-
tails on low-quality cloth, Gillette et al. [GPV∗15] propose tracing
wrinkle paths on the coarse mesh following the per-triangle com-
pression field. To accelerate the computation, recent researchers
are also making efforts to improve GPU-based algorithms. For ex-
ample, yarn-level contact can be modelled implicitly with GPU
in [CLMMO14]. Ni et al. [NKT15] present an algorithm to sim-
ulate cloth with complex collisions using a parallel run-time sys-
tem. To exploit high parallel performance, a matrix assembly algo-
rithm is proposed [TWT∗16] which can accurately solve the lin-
ear system. For clothes with more than 50,000 vertices, research
in [WWYW20] can still achieve fast simulations because of the ef-
fective conversion of continuous constraints. In practice, we usually
use physics-based simulations as ground truth data for learning-
based deformation and train the model to be able to estimate effects
close to those of the physics-based simulations.

Learning-based clothing models. Inspired by the success of deep
learning, a number of works are attempting to learn the deforma-
tion as a function of relevant parameters, where relevant parame-
ters include closest body vertex position, associate body skinning
weights, joint rotation angle, etc.

To resolve the high computational costs of physics-based simu-
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Figure 2: Overview of proposed method pipeline. Given a garment with an arbitrary mesh topology, a target body with any shape, and a
random animated posture, our method is able to approximate high-quality clothing deformation with expressive detail wrinkles. Our key
contribution is to address the challenge of “complexity” by designing a two-step framework with ideas of proposing the fit parameter α,
detail-aware attribute parser, and output reconstruction (from the displacement vector ∆ to its magnitude ‖∆‖ and direction δ). First, the
constructed graph Gb′ is fed into a coarse garment generator Wcoarse to predict the decomposed components ‖∆coarse‖ and δcoarse of the
coarse corrective displacement therefore realizing coarse deformation prediction Mcoarse. Next, we build a graph G based on the generated
deformation Mcoarse. Instead of directly applying attributes to each graph node, we further propose a detail-aware attribute parser Wparser to
generate detail-aware encodings and infuse them into the original graph to obtain the representative G∗. Then, a detail garment generator is
designed to process features of G∗ and output ‖∆detail‖ and δdetail in each branch. Two predictions are finally multiplied and added to the
Mcoarse to realize the ultimate detail clothing deformation Mdetail.

lation while realizing nonlinear clothing behaviors, Santesteban et
al. [SOC19] propose a two-level strategy to generate clothing de-
formations, where the first step is to use MLPs to learn the global
fit and the second step is to use recurrent neural networks to learn
the wrinkles. Also in order to estimate cloth deformations with fine
details, TailorNet [PLPM20] adopts multiple MLPs to realize the
task, in which low-frequency deformations are predicted using a
simple MLP model, and high-frequency deformations are predicted
using the mixture of multiple MLPs. To model how people wear the
same garments in different sizes, Tiwari et al. [TBTP20] propose
a SizerNet to approximate the wearing effect of a garment in dif-
ferent sizes. Because the dataset only consists of A-pose garments
and garments, the proposed method cannot generate a variety of
deformations in different poses. To solve the garment-body inter-
penetration, novel garment space is proposed in [STOC21], which
eliminates the need for any postprocessing steps. Although these
studies have achieved success in the automatic clothing deforma-
tion approximation with fully-connected layers, a common limita-
tion of these methods is the generalization ability, i.e., independent
training is always required when deforming new garments with new
mesh topologies.

To address the fundamental limitation of generalization in
learning-based deformations, research tries to approximate the
clothing deformation using graph neural networks which can
handle 3D data in non-Euclidian domains. The latest study in

[CMM∗20] introduces a graph neural network with a novel convo-
lution operator for cloth and body skin deformation approximation.
The proposed solution is specifically for triangle meshes. Inspired
by point cloud processing, Gundogdu et al. [GCS∗19] introduce the
framework based on PointNet for clothing animation. The results
look plausible but tend to be overly smooth. Focusing on fast cloth-
ing deformation, Vidaurre et al. [VSGC20] present a fully convo-
lutional graph neural network (FCGNN) to predict deformations
with fine-scale details. The framework consists of two graph neural
networks with the same structure and a different number of lay-
ers, which respectively predict the coarse draping and refinement.
The proposed pipeline can generalize to unseen mesh topologies,
garment parameters, and body shapes. However, the prediction is
only for one pose and does not consider pose variations. Bertiche
et al. [BMTE21] predict clothing deformations by using GCN and
MLP together, but are unable to achieve satisfactory results for
loose garments, such as dresses.

Alternatively, recent research [CPA∗21] introduces an SMPLicit
model for garments using an implicit representation that is capa-
ble of representing garments with different topologies. However,
some detailed deformations cannot be achieved precisely, espe-
cially for loose garments. Other studies achieve clothing anima-
tion from the perspective of computer vision. Research in Deep-
Wrinkles [LCT18] learns a conditional adversarial network to gen-
erate high-frequency details in normal maps. Recently, Zhang et
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al. [ZWCM21] tackle the generalization problem and make it pos-
sible to transfer details across the normal maps of different gar-
ments. Realistic clothing animation can also be achieved by the de-
forming garment with the displacement map [JZGF20]. However,
it falls short when applied with loose garments for the body.

Learning-based deformation. Several methods also apply data-
driven models to deformation approximation for animated charac-
ters. Loper et al. [LMR∗15] present a learned skinned multi-person
linear model (SMPL) of human body shape and pose-dependent
shape variation. Based on this, dynamic blend shapes are predicted
in [CO18,SGOC20] to enrich soft-tissue effects. These approaches
can be well generalized to new shapes and motions, but only work
for body meshes with a fixed number of vertices. By mapping
nodal linear deformations to the nonlinear one with contextual fea-
tures, [LSW∗18] can achieve elastic body simulation in real-time.
To make film-quality characters run at interactive rates, Bailey et
al. [BODO18] train multiple MLPs for one specific character. The
generalization problem is solved in [LZT∗19], which uses graph
neural networks to predict skinning weights for game characters
with complicated dressing. Research in [XZK∗20] also utilizes the
graph neural network to predict the number of joints and skinning
weights. To achieve realistic deformation, the nonlinear corrections
is predicted in each pose step [LSK20, LSK21] by using the im-
proved graph neural networks. Inspired by these methods, in this
work, we adopt the SMPL model as the base body and design
graph-learning-based models to achieve the clothing deformation
with good generalization ability and high-quality results.

3. Overview

Given a garment with arbitrary mesh topology, a target human body
with any shape, and a series of poses in motion, our goal is to au-
tomatically generate realistic clothing deformation with fine-scale
wrinkles. Training and predicting this task are not simple due to the
high variance of the deformation details. To address this challenge,
we first propose a fit attribute that can affect the details of wrin-
kles to a large extent (Section 4.1). Together with shape and pose
attributes, the multi-source attributes enable us to predict more re-
alistic clothing deformations and can give the model good general-
ization capabilities. Next, to fundamentally mitigate the complex-
ity of the task, while ensuring high-quality deformation effects, we
propose a new perspective of output reconstruction (Section 4.2).
Unlike the direct prediction of the displacement of each vertex in
all previous studies, we decompose this displacement so that the
numerical range of the prediction target is greatly reduced. With
these strategies, we introduce a pipeline that divides the deforma-
tion into two steps. The first step (Section 4.3) is to learn a coarse
garment generator to globally produce smooth clothing deforma-
tions with global draping effects. As depicted in Figure 2, we use
a coarse garment generator Wcoarse to achieve this, where Wcoarse
is designed with two branches consisting of graph-attention-based
blocks and fully-connected layers. Next, the second step (Section
4.4) is to further enhance details based on the coarse garment. Be-
cause of the complexity of this step, as shown in Figure 2, we de-
sign an attribute parser Wparser to generate detail-aware encodings
based on multi-source attributes and then infuse them into detail
garment generator Wdetail to generate rich and plausible wrinkles lo-

Figure 3: Fit of garment and body influences wrinkles.

cally. With the help of Wparser, excessive smoothness can be avoided
in deformations generated by Wdetail to a certain extent.

4. Approach

4.1. Garment-Body Descriptor

To achieve complex clothing deformations, we first observed pa-
rameters that affect the quality of deformations. In real scenes,
when the relationship between clothes and body (i.e., the degree
of fit) varies, the effect of garments on both global (rough) and lo-
cal (detailed) deformation is also different. As shown in Figure 3,
for the fixed material, when the fit degree is from loose to tight, the
wrinkles of garments are from smoother and sparser (with a wider
wrinkle width) to finer and denser (with a narrower wrinkle width).
This observation demonstrates the need to generate the fit parame-
ter as one of the network inputs, helping to better target the different
fits of garments to produce more realistic deformations. Next, we
will describe how to build this relationship between garment and
body and how to express this variation.

For the target body, we adopt the SMPL [LMR∗15] model which
represents the human body Mb with Nb vertices parameterized by
shape (β) and pose (θ):

Mb =Wsmpl(Mb(β,θ),J(β),θ,W), (1)

Mb = T +Bs(β)+Bp(θ), (2)

where the learned skinning function Wsmpl(·) is applied to deform
the rest-pose mesh Mb(β,θ) with skinning weightsW of the skele-
ton J(β). Mb(β,θ) is computed by applying shape blend shapes
Bs(β) and pose blend shapes Bp(θ) to the mean template mesh
T ∈ RNb×3.

Given the SMPL body Mb ∈ RNb×3 and garment Mg ∈ RNg×3,
we next explore their correspondence. We define the indicator ma-
trix I ∈ {0,1}Ng×Nb to indicate whether a garment vertex is asso-
ciated with a body vertex, where the indicator matrix I is obtained
by finding the closest vertex from garment to body. Here, we as-
sume that the body mesh has sufficient resolution and allows for
the one-to-one correspondence between body vertices and garment
vertices. For each garment-body pair (Mg, Mb) in rest pose, the
distance vector between corresponding garment vertices to body
vertices can be calculated as d = ‖Mg− IMb‖, where d ∈RNg , and
‖·‖ denotes the Euclidean norm operation along the last dimension
of the vertex matrix.

Next, we need to concatenate the distance vectors of all garment-
body pairs into a matrix, in preparation for exploring a concise rep-
resentation of the distance information in each pair. However, the
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“vector concatenation" here is difficult because the vector length
Ng varies in different garment-body pairs. Therefore, to make all
the distance vectors of the same length so that they can be con-
catenated together, based on the minimum number of vertices N∗

g
in the dataset, a fixed number of N∗

g elements are selected evenly
from the distance vector d of each garment-body pair to form the
new distance vector d∗, where d∗ ∈RN∗g . Specifically, the selection
is accomplished by rejecting (Ng−N∗

g ) vertices closer than the ra-
dius r =

√
Ag/(CN∗

g ) where Ag is the area of a garment mesh. If not
enough vertices are returned, the radius is gradually reduced by in-
creasing the integer C until the number of vertices equals N∗

g . With
the fixed length distance vectors, we can then concatenate them to
form a distance matrix D = [d∗

1 , ...,d
∗
Npair

] ∈RN∗g ×Npair which stores
distance information between all garment-body pairs. Notice that
the strategy of fixing N∗

g is only used here when constructing the
distance matrix, while in the latter sections the networks are still
input to garments with an arbitrary number of vertices Ng.

Next, we seek a parametric expression to represent this informa-
tion concisely. We compute the fit parameter using Factor Analysis
(FA) to model the variance along each vertex independently. Con-
sidering the speed of convergence, we use SVD-based likelihood
optimization [SLY20]. FA in matrix term is defined as:

D−µ≈ LA, (3)

where µ ∈ RN∗g is the mean vector which should be broadcast to
the same size as D∈RN∗g ×Npair for the subtraction. L∈RN∗g ×F and
A ∈ RF×Npair denote the loading matrix and factors. In this way, A
consists of Npair of vector α = [a1,a2, ...,aF ] ∈ RF which provides
an efficient F-dimensional representation for each garment-body
pair. We call this parameter α as the fit attribute. At runtime, given
the test garment-body pair in rest pose, we use the trained FA model
to perform matrix multiplication only once (in rest pose) to directly
obtain the fit relationship α.

In addition, for clothing deformation, body shape and pose also
have an impact on the detail folds. Hence, we refer to these three
parameters (α,β,θ) collectively as multi-source attributes. These
multi-source attributes play a key role in generating detailed de-
formations, which are taken as the input of Wparser introduced in
Section 4.4 .

4.2. Output Reconstruction

Most deformation approximation studies are plagued by the prob-
lem of highly nonlinear output, i.e., vertex position or displace-
ment. For the output of each vertex, the value of each element in
the output vector ranges from negative infinity to positive infin-
ity, leading some studies to utilize only a large number number of
fully connected layers while sacrificing generalization [PLPM20],
or to make predictions for only one pose for quality assurance
[VSGC20]. So far, there has been no research attempting to solve
the problem fundamentally from the perspective of reconstructing
output.

In our work, we propose an output reconstruction method by de-
composing the output vector of each vertex into the magnitude and
direction:

∆i = ‖∆i‖�δi, (4)

where the original output is ∆i ∈ R3, the decomposed magnitude
is ‖∆i‖ ∈ R+, and the direction is δi ∈ R3. The operator � means
Hadamard product, where the magnitude ‖∆i‖ should be broadcast
to the same size as the direction δi for element-wise multiplica-
tion. Unlike other learning-based methods which directly predict
∆i with a wide value range of (−∞,+∞) of each dimension of the
vector, our method indirectly predicts the vector’s magnitude ‖∆i‖
with the narrow value range of [0,+∞), and the direction vector
δi with each dimension value range of [−1,1]. In our two gener-
ators (shown in Figure 2), both networks are designed with two
branches in order to predict the decomposed items separately. In
addition, based on the value characteristics, we adopt different ac-
tivation functions in two branches: ReLU is used in the ‖∆i‖ branch
to output positive values; Tanh is used in the δi branch to map the
resulting values between -1 to 1. Thus, in contrast to the original
output ∆i with the infinite degree of freedom, the value range of
our decomposed output is greatly “narrowed”, and with the help of
the activation function, it can be ensured that the output is always
within a reasonable range.

With the two approximated items of ‖∆i‖ and δi, we finally mul-
tiply them together to obtain the final nonlinear offset vector. The
decomposition step does not seem complicated, and it plays a cru-
cial role that greatly mitigates the complexity of learning and can
generate better quantitative and qualitative results.

4.3. Coarse Garment Prediction

As stated in previous work [SOC19, PLPM20, VSGC20], directly
regressing clothing deformations as a function of designed param-
eters with one model will result in unrealistic results. Therefore,
the final deformation process must be divided into several steps to
perform approximations. In this work, we also decompose cloth-
ing deformation into coarse deformations with the overall fit and
detailed deformations with fine-scale wrinkles.

The goal in the first step is to achieve plausible clothing coarse
deformation Mcoarse in the garment worn by the target body Mb in
a certain animated pose:

Mcoarse = IMb +∆coarse, (5)

where I ∈ {0,1}Ng×Nb refers to the indicator matrix of the associa-
tion between garment and body vertices. For the remaining residual
part ∆coarse ∈ RNg×3, we aim to learn a model Wcoarse to automati-
cally infer the offsets.

With the garment and animated body, we first need to construct
a parametric space that can concisely express useful information
for coarse deformation without ignoring the spatial information.
Therefore, we consider the input of our network to be a graph.
Through the indicator matrix I, Nb′ body vertices are associated
with Ng garment vertices, where Nb′ = Ng. Based on these body
vertices, we then construct the graph: Gb′ = (Vb′ ,Eb′) which stores
vertex features Vb′ of Nb′ body vertices and their edges Eb′ where
(i, j) ∈ Eb′ denotes an edge connection between a node i and a
node j. In particular, the connection represented by Eb′ is equal to
the connection of the garment vertices. Next, for each node, we
need to assign attributes to make the node informative. Specifi-
cally, to encode the body mesh geometry, we append the vertex
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normal nb′
i ∈ R3 to each graph node; to reflect the body skinning

features in different poses, we adopt the relative skinning features
[LSK21] pb′

i =∑
S
s=1 ws,iGs(θ)Gs(θ

∗)−1 p̄b′
i ∈R3 to each node fea-

tures, where ws,i is the skinning weight of the vertex i affected by
the joint s, Gs(θ) is the rotation matrix of joint s in pose θ (θ∗ de-
notes the rest pose), and p̄b′

i is the rest pose position. Specifically,
this relative skinning feature is a variant of the body vertex posi-
tion, i.e., when the body is moved to an arbitrary location (no rota-
tion), the body vertex position changes while the relative skinning
feature remains the same. Since body features nb′

i and pb′
i alone

cannot predict clothing behaviors, we need to attach fit attributes
to each node to represent the relationship between the body and
the garment. Here, for simplicity and conciseness, the first compo-
nent a1 of the fit attribute α, which is the most discriminative one,
is adopted. In total, each node feature vb′

i in Vb′ consists of three
attributes, which can be expressed as: vb′

i = [nb′
i , pb′

i ,a1] ∈ R7.

Having the graph with defined features as input, next we need
to design a model Wcoarse for acquiring the latent representation
of the graph data and mapping it to the final prediction ∆coarse.
To accomplish this task, there are two requirements for the de-
sign model Wcoarse. Specifically, first, the model should have the
generalization ability that is able to deal with garments with ar-
bitrary mesh topologies. Second, the model should be able to in-
fer the overall deformation of garments under various body shapes
and postures according to the knowledge learned in the training
process. To satisfy these needs at the same time, we adopt graph-
attention-based (GAT) blocks which extend the original GAT struc-
ture [VCC∗17] with the self-reinforced stream [LSK20] for effi-
ciently handling complicated 3D mesh features. Specifically, the
original GAT structure computes hidden representation of the graph
node by aggregating the weighted neighboring features; moreover,
the self-reinforced stream uses a fully-connected layer to linearly
map the original node features to the latter layer. By aggregat-
ing node features from the neighborhoods and strengthening self-
features, such graph-attention-based blocks allow for acquiring the
latent representations of irregular mesh graph data without the need
of knowing the graph structure upfront.

As shown in in Figure 2, for coarse deformation prediction, first
we apply one block in the first layer for dealing with the input
graph, and then apply three blocks to each branch, i.e., the mag-
nitude prediction branch and the direction prediction branch. The
reason for designing two branches is that the value range of two
predictions (as stated in Section 4.2) is different and each branch
needs to adopt a different activation function to ensure the range
of the output value. In the last layer of two branches, linear trans-
formation and corresponding activation and normalization are used
therefore achieving the final predictions: the magnitude ‖∆coarse‖
and the direction δcoarse. The whole progress through the coarse
generator can be expressed as:

‖∆coarse‖,δcoarse =Wcoarse(Gb′). (6)

Lastly, two predictions are element-wisely multiplied together to
get the displacement ∆coarse to the body. During the training, we
minimize the MSE loss between the predicted displacement ∆coarse
and the ground truth ∆

GT
coarse.

4.4. Detail Garment Prediction

After obtaining the coarse clothing deformation, the next step is
to realize detailed deformation with fine-scale wrinkles. Compared
with coarse deformation that is easy to generate, detailed defor-
mation is extremely difficult to obtain due to its complexity and
volatility under various states. Despite research advances, existing
learning-based studies always have to face the trade-off between
the generalization ability of models and the fidelity of results, i.e.,
the model is only worked for the specific mesh topology [PLPM20]
or for rest pose [VSGC20, TBTP20] and tends to produce overly
smooth deformations [GCS∗19]. Even though significant efforts
have been made on many aspects such as input improvement, net-
work structure improvement, convolution operator change, and in-
crease in the number of models, different degrees of wrinkles in
diverse poses and shapes still cannot be stably learned and approx-
imated.

To address these challenges, we propose the novel detail-aware
attribute parser Wparser and detail garment generator Wdetail, where
the key idea is to adjust the wrinkle-related adaptive distribution of
the graph and transfer it through two branches for detailed defor-
mation approximation.

On one hand, given the generated coarse deformation, we build
a graph G = (V,E), in which V =

{
v1, ...,vNg

}
indicates clothing

mesh node features, and E is mesh edges. For each node, the fea-
tures are defined as: vi = [ni, pi,xi], which consists of the vertex
normal ni ∈ R3, the relative skinning features pi ∈ R3 (as stated in
section 4.3), and the distance vector from clothing vertices to all
joints xi = [xi,1, ...,xi,S] ∈ RS (S is the number of joints).

On the other hand, given a series of attributes that affect the
degree of wrinkles, directly constructing graphs by assigning at-
tributes (e.g., shape, pose, etc.) to every single node and then for-
warding them into the network is the most common strategy in
previous graph-learning-based methods. However, it will lead to
feature redundancy because attributes are independent on a sin-
gle node. Therefore, we design a detail-aware attribute parser (as
shown in Figure 2) that takes the multi-source attributes (α,β,θ)
as input and the detail-aware encodings Wparser(α,β,θ) as output
that can adaptively adjust the graph feature distribution based on a
given input instance. Specifically, detail-aware encodings are vec-
tors where their dimensions equal to d[1], i.e., the dimension of the
graph feature of each vertex after the first layer. Then, we element-
wisely multiply it with the transformed graph along the feature di-
mension:

G∗ =Wparser(α,β,θ)�W [1]
detail(G), (7)

where G∗ refers to the graph with the infused features after the
first layer of the graph W [1]

detail(G) and the detail-aware encodings

Wparser(α,β,θ). In other words, the original features in W [1]
detail(G)

have been adaptively modified by high-dimensional attribute en-
codings, so that new features in G∗ can be expressed in a more
detail-aware manner and be prepared for accurate prediction.

We input the new graph G∗ into the following layers of Wdetail

(except for the first layer W [1]
detail, the remaining part can be ex-

pressed as W [2-L]
detail ). Similar to the coarse generator Wcoarse, the
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Figure 4: Training and test samples in our dataset. Note that all test samples are unseen in the training set.

Figure 5: Generalization to new thin, regular, and fat bodies.

detail generator Wdetail also has two branches, which respectively
approximate decomposed detail output elements: the magnitude
‖∆detail‖ and the direction δdetail. Due to the difficulty of the de-
tailed deformation approximation, for each branch, in addition to
graph-attention-based blocks, we also apply graph pooling and un-
pooling operations [Die19] to avoid over-fitting problem and im-
prove the model generalization ability. In conclusion, the approx-
imation via the detail generator after the first layer W [2-L]

detail can be
expressed as:

‖∆detail‖,δdetail =W [2-L]
detail(G

∗). (8)

We multiply the predicted ‖∆detail‖ and δdetail to obtain the correc-
tive displacement ∆detail, and add this to the coarse deformation to

obtain the ultimate detailed clothing deformation:

Mdetail = Mcoarse +∆detail. (9)

During the training process, Wparser and Wdetail are optimized simul-
taneously. We adopt MSE loss as the loss function to minimize the
difference between the predicted ∆detail and the ground truth ∆

GT
detail.

Table 1: Mean error (mm) of per-vertex deformations in different
body shapes.

Test shapes Thin Regular Fat

Coarse 2.82 3.01 3.27
Detail 1.33 1.52 1.74

5. Evaluation

5.1. Dataset and Implementation

To evaluate our proposed method, we create a dataset (Figure 4)
consisting of various garments, body shapes, and animated poses
for training and testing. To produce the ground truth data of gar-
ments, we utilize the 3D clothing design and simulation software
Marvelous Designer [Mar] to design and generate clothing defor-
mations different mesh topologies and the number of vertices. To
obtain the coarse data, as in [VSGC20, PLPM20], we also apply
the Laplacian smoothing operator (with 0.12 diffusion coefficient
and 40 iterations) to each generated clothing mesh. Then, to gen-
erate different bodies, we adopt SMPL parametric human model
and sample the second and seventh shape components. The origi-
nal SMPL template has 6890 vertices, which we remesh to give it
sufficient mesh resolution (with 27554 vertices) to achieve one-to-
one correspondence with the garment mesh. This is done by apply-
ing 4-to-1 subdivision once for each triangle of an original mesh.
For the pose variation, we select animated poses from CMU mo-
cap [CMU] and AMASS dataset [MGT∗19], including motion se-
quences of dancing, ballet, etc. In particular, We divide the dataset
into a training set, a test set and a validation set, and ensure that
the data in them do not overlap. In our training set, we use 17 gar-
ments and six bodies with 2907 poses for each garment-body pair.
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(a) Thin body
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(b) Regular body
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(c) Fat body

Figure 6: Histogram plot of distribution of per-vertex errors of generalization to new body shapes. The bin width is 0.15. The first two bars
(error: 0-0.15 and 0.15-0.3) in 6a have the largest number of vertices, while those in 6c have the smallest number of vertices.

Figure 7: Generalization to new poses.

Then, to verify the effectiveness of the methods, we use seven gar-
ments, three body shapes, and 405 poses in the test set. Further, to
effectively help us keep track of training progress, we adopt three
garments, two bodies, and 103 poses for validation.

For the implementation, as shown in Figure 2, we next describe
the detailed structure of Wcoarse, Wparser, and Wdetail. For training
Wcoarse, the features of graph Gb′ are input into a GAT block with
the hidden feature size of 256 where the multi-head number is 4, the
feature sizes of the self-reinforced stream and aggregation stream
are 128 and 32 respectively. Features are applied with Tanh acti-
vation and then fed into the ‖∆coarse‖ prediction branch and the
δcoarse prediction branch, both branches contain three GAT blocks
with the hidden feature size of [512, 512, 256]. After graph convo-
lution, three fully connected layers are used to transform the fea-
tures with the hidden sizes of [256, 128, 1] in the ‖∆coarse‖ predic-
tion branch and of [256, 128, 3] in the δcoarse prediction branch.
To ensure that the output range is reasonable, ReLU and Tanh ac-
tivation functions are used respectively after each layer of the two
branches. Additionally, normalization is also used for features in

the δcoarse branch. For training Wparser, the multi-source attributes
(α,β,θ) (where α ∈ R3, β ∈ R10, θ ∈ R72) are transformed into
detail-aware encodings by three fully connected layers ([256, 512,
1024]) and ReLU activation function. For training Wdetail, the graph
features G are fed a GAT block with the hidden feature size of
1024. After infusing graph features with detail-aware encodings,
the feature dimension is unchanged and features are input into the
‖∆detail‖ prediction branch and the δdetail prediction branch. The
structure of four GAT blocks ([256, 256, 128, 96]) and operations
of pooling (Ng roughly becomes half) and unpooling (restored) are
the same in each branch. Finally, fully connected layers with the
hidden feature sizes of [128, 64, 1] and [128, 64, 3] and correspond-
ing activations are respectively adopted in the ‖∆detail‖ prediction
branch and δdetail prediction branch.

5.2. Quantitative and Qualitative Evaluation

Generalization to new bodies. As shown in Figure 5, we provide
the generalization results of thin, regular, and fat bodies that are
unseen in the training set. Based on the predicted coarse defor-
mation, our method is able to generate fine-scale wrinkles which
have no obvious difference with the ground truth data. In addi-
tion, our method can successfully predict individualized and de-
tailed clothing deformations of bodies with different shapes, which
contains rich and plausible wrinkles in the area of the left side of the
waist. During the training, the influencing attributes are transferred
into detail-aware encodings and clothing deformation is learned in
a detail-aware manner, so that we can effectively make accurate
predictions for new body shapes. Quantitatively, in Figure 6, we
counted the error distribution of these three test bodies wearing the
same training garments under the same training poses. As observed,
the number of vertices is the highest in the clothing deformation er-
rors of thin bodies close to zero (Figure 6a), and the mean error
of per vertex is about 1.33mm as reported in Table 1. The defor-
mation prediction error of the garment worn by thin bodies is rela-
tively smaller since the clothing folds are simpler than the garment
worn by fat bodies; in contrast, the garment worn by fat bodies have
more complicated folds, making them relatively difficult to predict.
Overall, through the deformation refinement of Wdetail and Wparser,
deformation errors are reduced by about half compared with coarse
deformations.
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Figure 8: Generalization to new short and long garments.

Figure 9: Generalization to unseen garments, bodies, and poses simultaneously.

Generalization to new poses. Figure 7 shows the results of visu-
ally evaluating the quality of our proposed approach of generaliza-
tion to new poses, in which we compared the deformations of the
ground truth physics-based simulations and our predictions. We an-
imated dressed bodies with new postures of raising the hand, walk-
ing, and swinging. Through the proposed method, attractive details
can be successfully generated, in which the wrinkles in areas of
armpits, waist, shoulders are rich and quite similar to real effect of
the ground truth with per-vertex prediction error of 1.67mm. Dur-
ing the training, in addition to graph constructions, we also design
a Wparser to generate detail-aware encodings and infuse them into
the graph neural network, so that the model can learn the individu-
alized deformations caused by different poses.

Generalization to new garments. Figure 8 shows the qualitative
results of the generalization to new garments, i.e., long t-shirt and
vest. Here, the test garments have different garment meshes and
number of vertices from the training. Thanks to the graph-learning-
based model and proposed detail-aware strategies, our model can
reasonably approximate deformations with rich details regardless
of the garment design. Due to the influence of the hem, long t-
shirt fits tightly to the body compared to the vest, so more dense
wrinkles appear in the deformation results around areas of stomach
and waist, which also follows the law of our first observation as
stated in Section 4.1.

Generalization to new garments, bodies, and poses simultane-
ously. Figure 9 and Table 2 show our results on unseen garments,
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Table 2: Mean error (mm) of per-vertex deformations in unseen
garments, bodies, and poses.

Test Coarse Detail

Dress + thin body + new poses 3.46 2.11
Jacket + regular body + new poses 3.65 2.39

Coat + fat body + new poses 3.63 2.27

bodies, and poses at the same time. Specifically, the types of test
garments have different mesh topologies, including cut-out detail
dress, short sleeve jacket, and 3/4 sleeve coat. At the same time,
we let characters with new body shapes wear these garments and
perform animations with new poses. Despite the fact that all three
variables are brand new and do not appear in the training set, our
predictions still naturally match the ground truth and most of the
fine-scale wrinkles can be successfully produced. Overall, the per-
vertex average error of the predictions for all the test data is about
2.24mm. Results demonstrate that our proposed method has pow-
erful generalization capabilities to handle completely new variation
terms simultaneously, and thus can be easily integrated into practi-
cal applications.

5.3. Ablation Study

We conducted an ablation study to highlight the effectiveness of
our strategies: output decomposition, detail-aware attribute parser,
two-step approximation, and graph pooling operation.

To evaluate the proposed output decomposition, we first retain
output displacement of per-vertex as the original three-dimensional
vector ∆detail (w/o decomposition), allowing the network to have an
unbounded prediction range. Further, we set a limited value range
for the three-dimensional output displacement (w/ output limit)
where the limited range is obtained by scaling each original dis-
placement value to (-1, 1) using a scale factor of 5 determined
by the dataset. Next, to evaluate the detail-aware attribute parser,
we tested the case of removing the attribute parser (w/o attribute
parser) where attributes are directly assigned to each graph node,
and the case of replacing the element-wise multiplication with con-
catenation in Equation 7 (concat attribute parser). Finally, to eval-
uate the usefulness of two-steps approximation and graph pooling
operation, we adopt a single model instead of two-steps approxi-
mation (w/o two steps) and removed pooling operators (w/o pool-
ing) separately. Notice that, for as fair as possible evaluations, the
models used in the above experiments have comparable capaci-
ties. Specifically, in the cases of the removal of layers, the num-
ber of parameters in the remaining layers is increased to ensure
the approximate consistency of capacity. Additionally, we choose
the best-tested initialization scheme for all evaluations, i.e., Glorot
initialization for the graph convolutional layers and Kaiming ini-
tialization for the other layers.

As shown in Figure 10, we plot the mean error of per-vertex
during the validation process. In the beginning, the method with-
out output decomposition produces the largest error, because the
output result is difficult to be approximated with three values from
negative infinity to positive infinity. As the epoch increases, it is
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Figure 10: Mean vertex error during validation of generating de-
tail deformations. Our proposed output decomposition and attribute
parser play a key role in the learning of detailed deformation.

still accompanied by highly complicated outputs and errors remain-
ing between 2.5-3mm that cannot be reduced. Next, when setting
the output within a limited value range, the error of the predic-
tion becomes lower than in the case of unbounded output, but the
convergence is not ideal. We also observe the importance of the
proposed attribute parser. Despite using a network structure with
approximately the same capacity as the original after removing the
attribute parser, the deformation error is still large. Applying con-
catenation rather than element-wise multiplication in Equation 7
leads to even worse results, as the attribute information cannot be
accurately infused into graph features. Also, without the two-step
strategy and the pooling operation, quantitative results are affected
to varying degrees. Figure 11 shows the qualitative results of these
experiments. As it can be seen, the direct prediction without output
decomposition leads to smoothing artifacts. Although the method
of scaling down the output to a limited value range can improve
the deformation effect, many detailed wrinkles are still lost. For the
result of without attribute parser, the deformation has the obvious
folds with the wider width in the waist and collar areas, which can
reflect a certain degree of wrinkle trend. However, when using con-
catenation to combine the attribute parser-processed features with
graph features, qualitatively the results are much worse. We also
find the worse performance for the method without the two-step
approximation, it suggests that mixing global and local deforma-
tions for learning substantially increases the difficulty of the task.
Finally, for the case of removing the pooling operation, the defor-
mation contains some details, but the position and trend of some
wrinkles differ from the ground truth, suggesting that graph pool-
ing works for the generalization of the model, i.e., using the learned
information to make valid inferences. In contrast, our full method
is able to successfully generate these major and subtle wrinkles and
recover detail effects similar to the ground truth thanks to the pro-
posed strategies.

5.4. Comparison

We compare our method with other state-of-art learning-based ap-
proaches: FCGNN [VSGC20] and TailorNet [PLPM20]. As listed
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Figure 11: Qualitative results of ablation study comparing detailed deformations of ground truth of physics-based simulation, approximated
by our full method, our method without output decomposition, without detail-aware attribute parser, without two steps, and without graph
pooling.

Table 3: Comparison of our approach with other state-of-art
learning-based clothing deformation methods. Our method can
achieve more functions with smaller model size.

Methods
Verts.

variation
Pose

variation
Fit

variation
Model

size

FCGNN 3 7 3 71.0 MB
TailorNet 7 3 3 2.0 GB

Ours 3 3 3 37.4 MB

Table 4: Quantitative comparison of FCGNN [VSGC20], TailorNet
[PLPM20], and our method.

Methods
Verts.

variation
Pose

variation
Fit

variation

FCGNN 1.53 - 1.70
TailorNet - 2.23 2.17

Ours 1.46 1.85 1.56

in Table 3, FCGNN can generalize to arbitrary garment meshes
due to the use of a fully convolutional graph neural network, but
it only predicts clothing deformations under the t-pose. TailorNet
is able to achieve pose-dependent deformations, but it is limited to
the use of trained MLP models to predict deformations of new mesh
topologies. To the best of our knowledge, currently, there is no prior
research involving tasks that are exactly the same as our method
to approximate clothing deformations for various mesh topologies
and body shapes in diverse poses.

The results of the qualitative comparison are shown in Figure 12
and the results of the quantitative comparison are shown in Table 4.
Because of the limited terms listed Table 3, garments with different

number of vertices and garments worn by different body shapes are
evaluated for the method of FCGNN [VSGC20]; one garment un-
der different postures and worn by different body shapes are eval-
uated for the method of TailorNet [PLPM20]. As observed, both
FCGNN and TailorNet have the generalization abilities and are
capable of generating plausible deformation effects, especially in
waist areas, and for garments worn by thin body shapes (as green-
framed parts in the figure). Despite the predictions for conspicu-
ous wrinkles, the shoulder areas with small fine-scale wrinkles are
still overly smooth (as red-framed parts in the figure). Quantita-
tively, our method also outperforms previous work. Although both
our method and FCGNN choose graph neural networks and both
take a two-step approach to deformation prediction, the key to our
success in predicting the details of folds under multiple variables
lies in the three core techniques we proposed: the fit parameter, the
output decomposition, and the attribute parser. Without these three
techniques, a vanilla graph neural network applied to deformation
would suffer from the complexity of multiple variables, and thus,
as in the case of FCGNN, would only be able to predict defor-
mation under t-pose and sometimes lose details. For TailorNet, it
can successfully generate deformations with some details by over-
fitting MLPs for each clothing type with fixed number of vertices.
Nevertheless, MLPs require a large number of parameters result-
ing in the model size of around 2.0 GB (just for the t-shirt), which
makes them difficult to be applied in practice. Meanwhile, the use
of MLPs ignores mesh topology information, resulting in models
that do not really learn the detailed deformations and thus the re-
sults are sometimes smooth. The comparison shows the benefit of
our proposed method: even in the face of multiple variations, the
model still has excellent generalization ability to approximate not
only obvious wrinkle folds but also fine-scale details.
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Figure 12: Qualitative comparison of FCGNN [VSGC20], TailorNet [PLPM20], and our method. FCGNN (with blue garments) can achieve
mesh topology variation and fit variation; TailorNet can achieve pose variation and fit variation; Ours is the first approach to achieve all of
these. In addition, our method can generate detail-aware clothing animation, that allows for rich detail prediction caused by various attributes.

5.5. Runtime Performance and Memory

With the nVIDIA GeForce RTX2080Ti GPU, in the approxima-
tion of clothing deformations of meshes with 3000-4000 number
of vertices, the average per-frame runtime is about 21ms, where
coarse prediction takes 8ms and detail prediction takes 13ms. The
proposed method is 50 times faster than physics-based simulation,
making it suitable for real-time applications. The memory foot-
print of our method is about 37.4MB, where the Wcoarse model is
18.4MB, and the Wdetail +Wparser model is 19MB.

6. Conclusion

We have presented a graph-learning-based deformation method for
garments whose mesh topology can be arbitrary and can be worn
by any body shape in various poses. To achieve generalization and
high-quality predictions at the same time, we first propose the fit
parameter as one of the important attributes influencing the wrinkle
details. Then, we design an attribute parser to generate detail-aware
encodings and infuse them into the graph neural network to help
generate individualized details. Last and most importantly, we pro-
pose a novel output reconstruction strategy for the excellent conver-
gence of extremely complex regressions. This strategy can not only

be adopted in clothing deformations, but also works for predicting
positions or displacement adjustments in other areas. Experimental
results have shown that our method with the above technical in-
novations can overcome the limitations and outperforms existing
learning-based approaches.

Despite achieving powerful generalization and impressive de-
tailed deformations, our method still has a few drawbacks that can
be addressed in future works. Firstly, we currently use a constant
indicator matrix I to represent the correspondence between the gar-
ment and the body, but keeping I constant causes garment-body
collisions when the garment deforms significantly, which is ad-
dressed by applying postprocessing step [PLPM20]. In the future,
it would be valuable to explore a a dynamically updatable indicator
matrix and adopting a diffused human model [STOC21] to effec-
tively solve the collision problem. Secondly, we currently apply
SMPL bodies as human models, which provide a parametric space
of shape and pose that can be easily used as one of input. In the
future when faced with different human model types, our currently
input will need to be adapted. For example, the dimension of the
pose features θ and vertex-joint distance features xi is related to
the number of joints and therefore is only applicable to rigs with
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the fixed number of joints. In this situation, the design of skeleton-
independent pose features or direct input of body vertex positions
are possible solutions in future research. Thirdly, each garment in
our dataset is given the same material and node distance settings.
Future work can expand the dataset to include different materials
and tessellation, and then explore related attributes as network in-
puts to automatically generate more realistic deformations.
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