
Published in IEEE Computer Graphics and Applications, Vol. 20, No. 2, 2000

Metamorphosis of Arbitrary Triangular Meshes

Takashi Kanai

Materials Fabrication Laboratory,
The Institute of Physical and Chemical Research (RIKEN),

2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
Tel: +81-48-467-9319
Fax: +81-48-462-4657

Hiromasa Suzuki Fumihiko Kimura

Department of Precision Machinery Engineering,
Graduate School of Engineering, The University of Tokyo,

Room No.921, Engineering Building No.14,
3-1, Hongo 7-chome, Bunkyo-ku, Tokyo, 113-8656, Japan.

Tel: +81-3-3812-2111 ext. 6495
Fax: +81-3-3812-8849

Abstract

Recently, animations with deforming objects have
been frequently used in various computer graph-
ics applications. Metamorphosis (or morphing) of
three-dimensional objects is one of the techniques
which realizes shape transformation between two
or more existing objects. In this paper, we present
an efficient framework for metamorphosis between
two topologically equivalent, arbitrary meshes with
the control of surface correspondences by the user.
The basic idea of our method is to partition meshes
according to the reference shapes specified by the user,
whereby vertex-to-vertex correspondences between the
two meshes can be specified. Each of the partitioned
meshes is embedded into a polygonal region on the
plane with harmonic mapping. Those embedded
meshes have the same graph structure as their original
meshes. By overlapping those two embedded meshes,
we can establish correspondence between them. Based
on this correspondence, metamorphosis is achieved by
interpolating the corresponding vertices from one mesh

to the other. We demonstrate that the minimum control
of surface correspondences by the user generates
sophisticated results of the interpolation between two
meshes.

Keywords: Geometric Modeling, Metamorphosis,
Surface Correspondence, Harmonic Mapping

1 Introduction

Three-dimensional (3D) metamorphosis (or morphing)
that establishes a smooth transition from a source object
to a target object, is an active research area in computer
graphics. We handle 3D geometric metamorphosis be-
tween two objects which are represented as triangular
meshes. The primary issue in 3D metamorphosis is
to establish surface correspondence between the source
and target objects, by which each point on the surface of
the source object is mapped to a point on the surface of
the target object [16]. Once this correspondence is es-
tablished, it is possible to generate a smooth transition

1

by interpolating corresponding points from the source
to the target positions. To improve the quality of 3D
metamorphosis between two triangular meshes, we par-
ticularly consider the following two issues:

Metamorphosis of arbitrary meshes In general, the
two meshes have different topological structures,
that is, vertex/edge/face graph structures. More-
over, meshes may have complicated geometric
shapes such as non-convex regions. Surface corre-
spondence between two such different and/or com-
plicated meshes must be established.

Metamorphosis with user control An appropriate
method for the user to control surface correspon-
dence is needed. For example, the user may wish
to map a bunny’s nose onto a tiger’s nose. We
need a method to incorporate such user-specified
surface correspondence with minimum user
intervention.

The former issue can be addressed by a recently pro-
posed method based on harmonic mapping by Kanai
et al. [15]. In [15], each of the two meshes, which
are topologically equivalent to a disk and have geo-
metrically complicated shapes, is developed into a two-
dimensional unit circle by harmonic mapping [10]. Sur-
face correspondence between the two meshes is estab-
lished by combining those two embeddings. However,
this method does not consider the latter issue of how to
allow the user to control surface correspondence. The
purpose of our paper is to develop an effective method
for 3D metamorphosis between two arbitrary meshes
which are of the same topology. We extend our previ-
ously proposed method [15] to achieve user control of
surface correspondence.

The rest of our paper is partitioned into the following
sections: Section 2 reviews the background of 3D meta-
morphosis, definitions, problem statements, and related
work. Section 3 describes an overview of the method
for 3D metamorphosis [15] with minor modifications.
Section 4 gives an extended method for 3D metamor-
phosis including user control of the surface correspon-
dence. Section 5 shows our results, and we discuss from
various viewpoints in Section 6. We conclude with sug-
gestions for future work and applications in Section 7.

2 Background

2.1 Problem Statement
In our paper, we deal with 3D metamorphosis between
two topologically equivalent, two-manifold, arbitrary
meshes, from the source mesh M 1 to the target mesh
M 2. A mesh M refers to a piecewise linear surface
which consists of a set of triangular polygons. A mesh
consists of two realizations: Topological realization
K is a vertex(v)/edge(e)/face(f) graph structure, and
geometric realization V is a set of vertex coordinates
V = {v1,v2, . . . ,vn} ∈ R3. The mesh can be arbitrary,
that is, no special restrictions are imposed on those real-
izations. We can also handle a mesh with boundaries. A
boundary of a mesh ∂M is a closed loop which consists
of a set of edges, each of which has only one neighbor
face.

Two meshes are said to be topologically equivalent if
a continuous, invertible, one-to-one mapping between
points on the two meshes exists. Such a mapping is
referred to as homeomorphism. A mesh is said to be
Euler-valid if its topology obeys Euler’s formula:

nv −ne +n f = 2−2g,

where nv,ne and n f denote the number of vertices,
edges, and faces, respectively. g denotes the genus of
a mesh. If two meshes are topologically equivalent,
the left-side members of Euler’s formula (called Euler’s
characteristic) for both meshes are equal. In our paper,
we assume that g is zero and discuss the extendability
to the case for non-zero g in Section 5.

In this paper, 3D metamorphosis is to interpolate two
given meshes M 1 and M 2. Its more precise definition
will be given in Section 3.4.

2.2 Related Work
Techniques which known as “metamorphosis” or “mor-
phing” were originally referred to as image metamor-
phosis,” or “image morphing.” They are popular tech-
niques used for creating a smooth transition between
two images by approximately interpolating both color
information and geometric shapes (for details, see a sur-
vey book[11]). To establish the metamorphosis between
two 3D objects using above image-based techniques, at
least two images, one of which displays one object and
another displays the other object, are needed. But any
time viewing or lighting parameter are changed, all pro-
cesses of 2D morph must be recomputed.

2

3D metamorphosis (or morphing), direct geometric
interpolation of two 3D objects, is independent of such
viewing or lighting parameters. Therefore, it has be-
come an area of active research in recent years (A de-
tailed survey paper is [19], and also in [11]). Ap-
proaches for establishing 3D metamorphosis are clas-
sified into two categories: volumetric approach and
mesh-based approach.

Volumetric Metamorphosis

One class of 3D metamorphosis algorithms deals with
sampled or volumetric representation of the objects.

Hughes [14] has proposed the transformation of ob-
jects into the Fourier domain, and then the interpolation
of low frequencies over time while the high frequen-
cies are slowly added in, thus minimizing the object dis-
tortion caused by the high-frequency components. In-
termediate objects are obtained from the inverse trans-
form of the interpolated results. Cheung et al. [5] have
proposed a similar method for use in the simulation of
a metal forming process. Wavelet-based approach has
been proposed for use instead of Fourier transform by
He et al. [13] so as to further improve performance.

Lerios et al. [21] have extended Beier’s feature-based
image metamorphosis method [2] to volumetric repre-
sentation. Two objects are translated into volumes, and
each corresponding pair of volume values is interpo-
lated according to the primitive shapes, which are de-
fined by the user. Lucas et al. [23] have proposed a very
similar method, using a 3D line set directly for the con-
trol of interpolation between two volumetric objects.

Cohen-Or et al. [6] have proposed an approach based
on DFI (distance field interpolation) method. This ap-
proach is divided into two phases: the warp phase and
the interpolation phase. In the warp phase, first each ob-
ject is decomposed into contour level volume sets, then
at each level a volume space is deformed so that two sets
of feature points, extracted by the user, are coincident
with each other. In the interpolation phase, volumes are
transformed to a distance field, a linear interpolation be-
tween two distance fields deformed in previous phase is
established.

These methods can deal with the topological changes
in the surface mesh during transformation. It is also
possible to apply these methods for meshes if these
are transformed to volumes. However, the interme-
diate shape is represented as a volume, and extrac-
tion to isosurface by such means as the marching cube
method [22] is required for obtaining meshes. More-

over, these objects may not be homogeneous to their
original shapes.

Mesh-Based Metamorphosis

Another class of algorithms deals with polyhedron-
based objects. In this class, an approach to the transfor-
mation from M 1 to M 2 usually involves two problem
steps. The first step is to establish a correspondence
from each point of M 1 to a point of M 2. Using this
correspondence, the next step creates a series of inter-
mediate objects by interpolating corresponding points
from their original positions on M 1 to the target posi-
tions on M 2. These steps are called correspondence
problem and interpolation problem, respectively [16].
Our approach falls in this class and follows these steps.
Especially, we primarily discuss the former issue.

Kent et al. [17, 16] offer an algorithm for the
metamorphosis of two polyhedral objects topologically
equivalent to a sphere (g = 0). First, two objects are
mapped onto a sphere and merged by clipping one
sphere to another. Then, a new shape which has a com-
bined graph information (vertices, edges, and faces) for
the two objects is created. However, the technique de-
scribed in [17] is applicable only to star-shaped polyhe-
dral objects. It was further extended in [16] to the other
types of objects such as tubular (swept or revolution-
ary) objects which involve objects reconstructed from
cylindrical scan-type range images like Cyberware. To
establish correspondences over these types of objects,
the user must specify a lib along the center of the con-
tour of an object, and must project it to a convex-hull as
an intermediate object. In this approach, various types
of objects can be treated, but it seems to be a rather trou-
blesome work for the user to specify such a lib so as to
establish correspondences especially for geometrically
complicated objects.

Parent [26] presents a recursive algorithm which au-
tomatically finds a correspondence between the sur-
faces of two objects of equivalent topologies. This algo-
rithm uses several sheets for covering the whole object.
These two objects must have an equal number of sheets.
Sheet boundaries must be composed of the edges of the
object. Objects of genus g are automatically subdivided
into 2(g+ 1) sheets. Each sheet is recursively subdi-
vided down to the face level. Vertex-to-vertex interpo-
lations and thus deformations between the two objects
are completely established.

Delingette et al. [8] use a simplex mesh, and propose
basic mesh operations to alter shape topologies. Thus

3

the method is restricted to this type of mesh. The inter-
polation is performed using a physically-based defor-
mation approach in concert with a method derived from
a data-fitting process. The process, however, seems to
be time-consuming.

Decarlo et al. [7] describe another framework for
the metamorphosis between two objects with differ-
ent topologies, for example, the metamorphosis from a
sphere to a torus. This method has a similar methodol-
ogy to our method. To make the surface correspondence
between two objects with different topologies, each of
two meshes is divided into a set of sub-meshes, accord-
ing to a set of the user-specified triangular or quadrilat-
eral reference faces, called a control mesh. Metamor-
phosis between two objects with different topologies is
established by associating that each triangular face in
one control mesh changes to the corresponding quadri-
lateral face in the other. One difference between De-
carlo’s method and ours is that our approach establishes
correspondences more easily for the user. For exam-
ple, there is no restriction about the number of edges of
the control mesh. The other difference is a relationship
between the subdivision of meshes and the parameteri-
zation of each sub-mesh. Decarlo et al.’s method uses
Kent et al.’s parametrization[16] which has the limita-
tion for the type of meshes. In our method, the user
does not need to care whether each sub-mesh can be
parameterized successfully or not. Thus, our method
presents more sophisticated approach for the user to es-
tablish correspondences.

Recently, Gregory et al. presented a similar approach
[12]. Gregory et al.’s paper treats the metamorphosis
between two objects with same topological types. First
the user specifies a curve net, called a feature net, con-
sists of vertices and edges of the mesh and the mesh is
divided into several sub-meshes according to this net.
Then surface correspondences between each sub-mesh
of two objects are established using area-preserving
mapping. Desirable metamorphosis for the user can be
generated based on local refinements of a curve net.
One difference between Gregory et al.’s method and
our method is an approach for ’cutting’ the mesh to
divide into sub-meshes. Our cutting uses an approxi-
mate geodesic curve on the mesh, whereas Gregory et
al’s uses a shortest path of vertices/edges graph on the
mesh. Detailed discussions appear in Section 4.2. The
other difference is the parametrization of meshes. We
use a harmonic mapping (Section 3.1) for the parame-
terization, while Gregory et al. propose an alternative
parameterization approach called area-preserving map-

ping. Details are discussed in Section 6.1 and Section
6.2.

3 Surface Correspondence Prob-
lem

In this section, we overview a central part of the con-
struction of the surface correspondence proposed by
Kanai et al. [15]. Their basic idea is to construct the
surface correspondence by combining two meshes in
a common domain. First, we imbed each of the two
meshes in a n-gonal region lying on an unit circle in R2

by harmonic mapping (Section 3.1) as the parametriza-
tion of the mesh. Second, those two n-gonal embed-
dings are combined with each other for the construc-
tion of surface correspondences (Section 3.2). Third,
another mesh F c is created for interpolation based on
these surface correspondences (Section 3.3). F c has
the merged graph structure of F 1 and F 2 so that it can
represent shapes of both F 1 and F 2 by alternating the
vertex positions. Finally, by smoothly transitioning the
vertex positions of F c from positions of F 1 to those of
F 2, we achieve 3D metamorphosis (Section 3.4).

3.1 Harmonic Mapping

To achieve the surface correspondence between two
meshes, we prepare embedding H ⊆ R2 in the two-
dimensional unit circle. We map a three-dimensional
topological disk F ⊂ M to H , where F is a subset of
M and is homeomorphic to the topological disk. Har-
monic mapping, h : F 7→ H , is one of the mappings
that realizes such an embedding. Note that F and H
have the same graph structure of vertices, edges, and
faces, and thus have a one-to-one correspondence be-
tween their vertices, edges, and faces. It is worth noting
that a polyhedron M is usually homeomorphic to the
topological sphere or torus of genus n. However, by in-
serting proper “cuts” to M , we can divide M to a set of
F each of which is homeomorphic to the disk. Our ap-
proach for cutting meshes is described later in Section
4.2.

To construct this mapping, we adopt a method pro-
posed by Eck et al. [10]. Strictly speaking, Eck et al.’s
mapping method is a piecewise linear approximation
method for realizing embedding from M to H . Our
method for creating an embedding H from F is divided
into two steps: (i) boundary mapping g : ∂F → ∂H

4

x

y

Figure 1: An embedding H from “hand” model F . ∂F ,
a closed boundary of F , is composed of 36 vertices, and
three of those vertices are corresponding vertices.

where ∂F is the boundary of F , and ∂H is the bound-
ary of H . (ii) harmonic mapping h which maps internal
vertices of F into H .

At the boundary mapping step, n vertices are cho-
sen from ∂F and positioned to a regular n−gon on the
unit circle in R2 whose center is at the origin. We call
these vertices corresponding vertex (CV), as discussed
in Section 4.1. The rest of the vertices in ∂F are posi-
tioned on the edges of n−gon in the same order, and in
such a way that the ratios of the mapped edge lengths in
∂H are equal to those of their original edge lengths in
∂F .

At the harmonic mapping step, the positions of the
rest of the vertices are calculated so that a total energy
function E is minimized. E can be a sum of the elastic
energy of springs placed along the edges of H :

E = 1/2 ∑
{vi,v j}∈H

κi, j|vi − v j|2, (1)

κi, j = (li,k1
2 + l j,k1

2 − li, j2)/Ai, j,k1

+ (li,k2
2 + l j,k2

2 − li, j2)/Ai, j,k2 , (2)

where vi,v j denote 2D positions of the two end vertices
of an edge {vH

i ,vH
j } in H and li, j denotes the length of

edge {vF
i ,vF

j } as measured in F . Ai, j,k1 ,Ai, j,k2 denote

the areas of faces {vF
i ,vF

j ,v
F
k1
}, {vF

i ,vF
j ,v

F
k2
} as mea-

sured in F respectively.
An unique solution that minimizes E can be found

by solving a linear system ∇E = 0, where ∇E is the
gradient of E over v, because E is a positive quadratic
function over v. We order x,y components of v into a

2N dimensional vector V:

V ≡ (v1.x, v1.y, v2.x, v2.y, . . . , vN .x, vN .y), (3)

where N denotes the number of vertices in H . E is a
quadratic function of every component in V, so it can
be represented as the quadratic form E = VT HV. Then
the gradient of E can be expressed as ∇E = ∂E/∂V.

As mentioned above, vertices on the boundary are
fixed. To solve a linear system, we first divide a variable
vector V into two parts: a free part Vh and a fixed part
Vg; the constant matrix H is also divided accordingly.
Thus, the energy function E is rewritten as follows:

E =
[
VT

h VT
g
][Hhh Hhg

Hgh Hgg

][
Vh
Vg

]
. (4)

As this energy function is constant for a fixed part, we
only have to solve a linear equation for the free parts Vh
to minimize E:

∇E =
∂E
∂Vh

= 2HhhVh +2HhgVg = 0 (5)

Note that in Hhh a non-diagonal element at the i-th row
and j-th column is non-zero only when there exists
some edge connecting vertices related to the i-th and
j-th column. Since there are fewer edges incident to a
vertex than the total number of vertices of H , Hhh is a
sparse matrix. We use a bi-conjugate gradient method
[27] to solve a sparse linear system in Equation (5). Its
computation time is approximately O(n).

Figure 1 illustrates an example of embedding. An
original 3D “hand” model F (nF

v = 2,414, nF
f = 4,760

) is topologically equivalent to a disk and has a closed
boundary ∂F along its wrist. It has 36 vertices. By
boundary mapping g, the three CVs vF

i ,vF
j ,v

F
k in ∂F

(the big spheres in Figure 1) are located on the regu-
lar triangle as shown in the figure. The rest of the 33
vertices of ∂F (the small spheres in Figure 1) are posi-
tioned on the edges of the triangle. Internal vertices in
F are mapped into the triangle by harmonic mapping h.
The result shows that fingers which include concave re-
gions develop into a disk without self-intersections. The
computation time for this example is about five seconds
on MIPS R4400, 250MHz.

3.2 Combining Two Embeddings
We combine two embeddings H 1 and H 2 to generate
a combined embedding H c as shown in Figure 2. H c

has a combined graph structure of H 1 and H 2. Surface

5

Figure 2: By combining two embeddings, H c is gen-
erated. It has a combined graph structure of H 1 and
H 2.

correspondence between H 1 and H 2 and thus between
F 1 and F 2 can be established by using H c.

An algorithm for generating H c consists of the fol-
lowing four steps:

STEP1 investigate intersection between edges of H 1

and H 2.

STEP2 sort intersection points to split edges of H 1 and
H 2 to generate vertices and edges of H c.

STEP3 create a clockwise edge cycle at each vertex in
H c.

STEP4 create faces of H c.

We use Kent et al.’s algorithms [16] for implementing
STEP1 and STEP2. STEP2 utilizes topological in-
formation generated in STEP1. When an intersection
point is found in STEP1, we obtain information about
which adjacent faces the intersecting edge crosses. We
record this information for sorting intersection points
along edges to be split.

In STEP2, the vertices and edges of H c are gener-
ated. The vertices of H c consist of the vertices of H 1

and H 2 (original type) and intersection points between
the edges of H 1 and H 2 (split type). The edges of H c

consist of the edges of H 1 and H 2, some of which are
subdivided by intersection points.

At STEP3, a clockwise edge cycle at each vertex
of H c is generated for creating faces in STEP4. This
is carried out according to the vertex type, original or
split. If a vertex is original, its edge cycle is inherited
from its original edge cycle of H 1 or H 2. If a ver-
tex is split, its edge cycle is generated for intersection
edges (Figure 3(a)) by using links to the four intersect-
ing edges. These links are set to the vertices at STEP1.

In STEP4, faces of H c are created with those ver-
tices, edges, and clockwise edge cycles (Figure 3(b)).

Intersection Point

(a) (b)

Figure 3: (a) An edge cycle at an intersection point is
created by four intersecting edges. (b) Faces of H c are
created by vertices, edges, edge cycles along a vertex in
H c.

Faces of H c are created by the following traversal
method: We start from some vertex of H c and traverse
one of its incident edges. Then we arrive at the other
vertex of that edge and choose the next edge connected
counter-clockwise by using the edge cycle information.
These steps are repeated until we arrive at the start ver-
tex. Consequently, a counter-clockwise vertex loop is
identified to generate a face. These faces created by
this method may not be triangular faces. Therefore,
we finally triangulate those faces. The subdivision is
straightforward because the faces are all convex.

3.3 Interpolation Mesh

For an interpolation between F 1 and F 2, it is not
enough to create H c. We need a mesh for interpolat-
ing between the two meshes. Interpolation mesh F c

has the same graph structure as H c. We first determine
the geometric realization of F c for F 2. We denote it
F c2. The idea here is to let F c take on the same shape
as F 2. While the graph structure of F c2 are different
from that of F 2, the total shape of F c2 can be made the
same as F 2. We also define F c1, which is the geometric
realization of F c for F 1.

To do this, vF c2
, the 3D coordinates of F c in F 2

must be determined. Some of the vertices of F c come
from F 2. For those vertices, their positions are defined
as the original positions in F 2. The other vertices either
(i) come from F 1 or (ii) are generated by edge intersec-
tion in STEP1. For those vertices we have to compute
the 3D coordinates. As for the vertices of type (i), each
of these vertices corresponds to a vertex in F 1, which
is mapped to a vH 1

in H 1. Since H 1 and H 2 are just
overlapping, there exists a triangle face of H 2 involving
vH 1

. We compute the barycentric coordinates of vH 1
in

6

Figure 4: Calculate 3D coordinates of vertices in F c

from the barycentric coordinates in the face involving a
vertex.

this triangle.
In Figure 4, f H 2

= {vH 2
α ,vH 2

β
,vH 2

γ } denotes a face

involves a vertex vH 1
. (α,β,γ) (α+β+ γ = 1) denotes

its barycentric coordinate. vF 2
α ,vF 2

β
,vF 2

γ denote corre-

sponding 3D coordinates of vertices vH 2
α ,vH 2

β
,vH 2

γ in

F 2. 3D coordinates vF c2
for vF 1

is calculated by the
following equation:

vF c2
= αvF 2

α +βvF 2

β
+ γvF 2

γ . (6)

For each vertex of type (ii), its vF c2
is also obtained

from the barycentric coordinates of its corresponding
vH c

in a similar manner as type (i). vF c1
can be com-

puted in the same way as vF c2
.

3.4 Metamorphosis over F c

The major result obtained in the previous subsection is
that we can now represent two different shapes of F 1

and F 2 in single, another mesh structure of F c. While
F c1 and F c2 have the same shape as F 1 and F 2 re-
spectively, they have the same graph structure as F c.
So by interpolating vertex positions from vF c1

to vF c2
,

F c1 gradually changes its shape to F c2. 3D metamor-
phosis from F 1 to F 2 is realized by applying a sim-
ple linear interpolation method to the vertex positions.
For interpolation parameter t(0 ≤ t ≤ 1), vF c

(t) can be
computed by using two 3D coordinates vF c1

(t),vF c2
(t)

as follows:

vF c
(t) = (1− t) vF c1

+ tvF c2
. (7)

An intermediate shape at t is represented by F c with
the geometric realization vF c

(t).

4 Surface Correspondence with
User Control

In this section, we extend the method for establishing
surface correspondence between two meshes M 1 and
M 2 discussed in the previous section, so that (mini-
mum) user control of correspondence can be achieved.

Though we can think of many kinds of user control,
we focus on control on vertex correspondence. The ver-
tex correspondence is a set of pairs of vertices, one from
the source mesh and the other from the target. This
pair is named corresponding vertex pair (CVP). CVP
constrains so that the source vertex is transferred to the
target vertex. It can be regarded as the most primitive
control method.

One straightforward way to incorporate such con-
straints is to add constraint equations to Equation (5).
For instance, in order for vF 1

to correspond with vF 2
,

their images of harmonic mapping, vH 1
and vH 2

must
be coincident. By adding the contraint equation of
vH 1

= vH 2
to Equation (5), the vertex correspondence

could be achieved. Unfortunately, from our experi-
ments, we found that this method does not work well.
If we solve Equation (5) with the condition that several
internal vertices of H are on the fixed constraint, an
undesirable self-intersection usually occurs along fixed
vertices.

Instead we would make efforts to avoid those ill-
conditions, we take an another approach. We divide
the mesh into several regions named tile and establish
surface correspondence per tile. By allocating such cor-
responding vertices to the boundaries of those tiles, the
vertex correspondence can be automatically satisfied.

An overview of our proposed method is shown in
Figure 5. The process consists of user definition process
and system calculation process. In the user definition
process, the user specifies corresponding vertex (CV)
for the control of a desired interpolation. Using CVs,
the user also defines partition control mesh (PCM) C 1

and C 2 (Section 4.1). In the system calculation process,
each of the two meshes M 1 and M 2 is partitioned by
grouping its faces according to C 1 and C 2 to obtain M̂ 1

and M̂ 2 (Section 4.2):

M̂ 1 =

nC
f⋃
j

F 1
j , M̂ 2 =

nC
f⋃
j

F 2
j . (8)

The method discussed in Section 3 is applied to each
pair of F 1

j ⊆ M 1 and F 2
j ⊆ M 2, an interpolation mesh

7

Meshes

Vertex Correspondence

Partition Control Meshes

Interpolation Mesh

Embeddings

Combined Embedding

Partial interpolation mesh

System Calculation

 User Definition

Tiles

Figure 5: An overview of our method for 3D metamor-
phosis between two meshes M 1 and M 2 with user con-
trol of surface correspondence.

M c is created by merging partial interpolation meshes
F c

j (Section 4.3).

4.1 Partition Control Mesh
Figure 10 shows basic elements of this approach. As
shown in Figure 10(a), the user first selects pairs of
corresponding vertices (CV), one from each of the two
meshes M 1 and M 2 to define the corresponding vertex
pair (CVP). Next, as shown in Figure 10(b), the user
creates partition control meshes (PCM) C 1 and C 2 by
connecting CVs. By sequentially picking CVs to form a
vertex loop, faces of the meshes are defined. The faces
are not necessarily triangular. The directions of their
vertex loops must be the same as those of faces on the
original meshes (in a counter-clockwise direction in our
paper). C 1 (C 2) is designed so as to be topologically
equivalent to its original mesh M 1 (M 2). C 1 and C 2

must have the same graph structure, but only 3D coor-
dinates of the vertices can be different. As shown in
Figure 10(c),(f), according to C 1 (C 2), the mesh M 1

(M 2) is partitioned into tiles. For each face of C 1 (C 2),
one tile is defined.

How much control of surface correspondence is nec-
essary depends on the number of CVPs. The minimum
number of such CVPs is determined by the parameteri-

zation we adopt. For the mesh topologically equivalent
to a sphere, at least two faces are needed in a PCM to
divide a topological sphere into two topological disks.
As the minimum component of such a disk is a trian-
gle, then at least three CVPs are needed per a face of
a PCM. If the number of CVPs is only three, the user
must define two faces which have same three vertices.
In our current implementation, we put an additional re-
striction that more than four CVPs are needed to define
a tetrahedral PCM because such a definition seems to
be useful for the user to understand a PCM intuitively.

4.2 Partition of Meshes
According to the topology of partition control meshes
C 1 and C 2, M 1 and M 2 are automatically divided into
tiles F 1

j ⊆ M 1 and F 2
j ⊆ M 2(j = 1 . . .nF ,where nF

f =

nC
f) respectively. The method for partitioning a mesh

consists of the following three steps; First, each edge
of C is projected onto its original mesh M to generate
a path on the mesh so that its two end points are CVs.
Second, each face of M over which those paths cross is
subdivided into triangular faces. Finally, a mesh group-
ing algorithm is applied to gather faces of M as a tile.

Projecting edges of C to M

One approach to ‘cut’ the mesh, that is, to project edges
of C onto M , is to use a vertex/edge graph of M and to
calculate a shortest path on a graph as described in [12].
However, we found from our experiment that a set of
such paths composed by original vertices and edges of
M causes some problems. First, it usually occurs that
two close paths are overlapped each other. Moreover, it
is quite a hard task for the user to specify vertices so as
not to overlap. Especially, the finer we create a PCM,
the more frequent it occurs.

We regard the projecting edges of C onto M as a
calculation of the exact shortest path (it is also called
geodesic curve) between two vertices of M . However,
in general, finding the shortest path between two ver-
tices on a mesh is a difficult problem[25]. Chen et al.
[4] have proposed a method for an exact solution of
this problem in O(n2) time. Their method is based on
transforming faces of meshes onto a plane. As 3D rota-
tions are used, numerical errors for the paths or geomet-
ric structures can occur. Instead, we use a method for
calculating an approximate shortest path between two
vertices[18]. Before the calculation, intermediate edges
are created on the faces of M as follows: first, several

8

intermediate vertices (called Steiner Point) are created
on the edges of M . The number of added vertices per an
edge is determined according to its length so that more
vertices are added to a longer edge.

Now each face f M
i (i= 1 . . .nM

f) of M has intermedi-
ate vertices on its edges in addition to the original ver-
tices. From the total set of these vertices, we choose
every pair of vertices ⟨va,vb⟩ and create an intermedi-
ate edge for the face if the pair satisfies either of two
conditions:

• va and vb are on the different edges.

• va and vb are on the same edge and adjacent.

Approximate shortest paths are calculated based on a
graph which is composed of vertices and edges of M
and intermediate vertices and edges using Dijkstra’s al-
gorithm [1]. The computation time for this method is
approximately O(n logn).

This method does not compute the shortest path ex-
actly, but the difference is too small to recognize visu-
ally. Moreover, compare to Chen et al.’s method that
calculates real paths, this method is not only fast but re-
duces the accumulation of numerical errors caused from
frequent 3D rotation computations. Figure 10(c),(f)
show the calculated shortest paths.

It is applicable for all approaches (ours is also in-
cluded) that ‘cutting‘ of the mesh based on calculat-
ing shortest paths do not always hold good for all sit-
uations. For example, extremely speaking, it is clear
that the number of shortest paths between a north pole
and a south pole of a sphere is infinite. It can occur that
a path far from desirable one for the user is generated,
if the geodesic distance between user-selected two ver-
tices of a mesh is long. In our implementation, if an
undesirable path is generated, such inconveniences are
avoided by specifying more CVPs along failure paths
so that shorter distance paths are recomputed.

Subdivision of Faces in M

The faces which are determined to be crossed by these
shortest paths are then subdivided into triangular faces
(Figure 6(a)). Such faces can be classified into three
subdivision patterns as shown in Figure 6(b). Subdi-
vision is needed for the case (ii) and (iii). Subdivided
faces are not always triangular faces, and those faces are
triangulated. The triangulation is trivial because those
faces are planar convex quadrilaterals. The above pro-
cess is repeated for each of the edges of C . At each

shortest path

(a)

(i) (ii) (iii)

(b)

Figure 6: (a) Subdivision of faces of M on a shortest
path. (b) Three patterns for a face subdivision.

repetition, the intermediate edges of those subdivided
faces are updated. After the process is finished, the in-
termediate edges and vertices which do not contribute
to the paths are removed.

Mesh grouping algorithm

After inserting all the shortest paths according to the
partition control mesh and subdividing/triangulating
faces, we define the tiles bounded by some number of
shortest paths. A tile is a set of continuous faces and is
thus obtained by grouping faces. Here we describe our
mesh grouping algorithm.

Before applying the mesh grouping algorithm, we
have to prepare some data structures. We represent a
mesh M with a half-edge data structure [24] (Figure
7(a)). In addition to this structure, we also define a
data structure for edges of the shortest path, we call
them path edges, as shown in Figure 7(b). We define
edge direction as the direction from a start vertex to an
end vertex. It also has two links to left_halfedge and
to right_halfedge based on this direction. In addition,
we define a link from a path edge to each correspond-
ing half-edge. As shown in Figure 7(c), a shortest path
is generated for an edge of C . And for a face of C we
can think of a loop of edges which turns around a tile in
a counter-clockwise direction. Referring to these edge
directions, the directions of the shortest paths can be de-
termined. And we set a direction for each path edge to
the same direction as the direction of the path. Then, the
left half-edges of those path edges are subject to group-
ing.

9

mate

vertex vertex

start_halfedge

nextnext face

Vertex

HalfEdge

(Edge)

Face

left_halfedge

PathEdge

right_halfedge

start_vertexend_vertex

HalfEdge

Vertex

a path edge

the direction of a shortest path

(a) (b) (c)

Figure 7: (a) Half-edge Data Structure. (b) Data structure of a path edge for grouping meshes. (b) Create directions
of path edges along a tile.

Figure 8 shows a pseudo-code of our mesh grouping
algorithm GroupingMesh. This algorithm can parti-
tion faces into tiles and put a certain identifier id to the
faces in the same tile.

In GroupingMesh, the search of grouping faces be-
gins from the left face of a path edge in a tile. For this
face, recursive function GroupingFace is executed.
GroupingFace traces the half-edges of a face. Group-
ingFace is recursively executed to a face which the
mate of a half-edge has. The traced face is marked id.
This algorithm totally traces all faces in H once. At the
worst case, all half-edges of each face are traced. How-
ever, the number of half-edges in a face is always three
because a face is a triangle. It is quite smaller than the
number of faces of a mesh in general. Thus, the execu-
tion time of this greedy-like algorithm is approximately
O(n).

In practice, the partitioning of M 1 and M 2 is per-
formed separately. The faces of M 1 and M 2 which
have the same id are stored as a tile F 1

id and F 2
id re-

spectively. Vertices and edges which consist of faces of
a tile are also stored together. Vertices which consist of
CVP and path edges belong to more than two tiles.

4.3 Generating a Partial Interpolation
Mesh

For each pair of tiles F 1
j and F 2

j of partitioned mesh

M̂ 1 and M̂ 2, we apply our method described in Sec-
tion 3 (Figure 9). First, embeddings H 1

j and H 2
j are

created by developing F 1
j and F 2

j into the 2D unit cir-

cle, respectively. ∂F 1
j and ∂F 2

j are mapped onto the
edges of the n−gonal region on the unit circle. CVs in
∂F 1

j and ∂F 2
j are mapped into the same vertices of the

n−gon. In Figure 9, CVs on the meshes are mapped to
the vertices on the embeddings. Next, those two embed-
dings are combined, and a combined embedding H c

j is
created. Third, a partial interpolation mesh F c

j is cre-
ated. 3D coordinates of vertices in F c

j for F 1
j and F 2

j
are computed from barycentric coordinates of the face
which involves the vertex of H 1

j or H 2
j . Finally, the to-

tal interpolation mesh M c is created by merging all the
F c

j . CVs and path edges belonging to several partitions
are unified. 3D metamorphosis is made using M c as
described in Section 3.4.

4.4 Surface Correspondence for Meshes
with Boundaries

The method proposed in our paper is applicable to
the mesh M which has closed boundaries ∂M pro-
vided that we shall define proper CVPs, partition con-
trol meshes, and shortest paths.

The user must create more than three CVs on a closed
boundary and also create an edge loop of C using those
vertices along the boundary. Moreover, when the edges
of C , both of whose end vertices are composed of CVs
on a closed boundary, are projected to M , these paths
are composed of part of the boundary edges. To create
those paths, we don’t need to use the method described
in Section 4.2. We simply search the boundary edges of
M to create such paths.

10

void GroupingMesh (Mesh M , Id id)
{

e = one of path edges of group id;
f = e.le f t_hal f edge. f ace;
GroupingFace (f , id);

}

void GroupingFace (Face f , Id id)
{

f .group_id = id;
he = f .start_hal f edge ;
do {

if ((he.mate ̸= nil)
&& (he.pathedge == nil)) {
n f = he.mate. f ace ;
if (n f .group_id ̸= id)

GroupingFace (n f , id);
}
he = he.next ;

} while (he ̸= f .start_hal f edge) ;
}

Figure 8: Pseudo-code of the mesh grouping algorithm.

5 Results

We have implemented a prototype system on a graph-
ics workstation SGI Indigo2 High Impact (MIPS R4400
250MHz CPU, 128MB memory). We have examined
several different examples using our proposed method
for 3D metamorphosis. Table 1 summarizes the num-
ber of vertices, faces, and three computation times for
those examples.

First, we used two different controls of 3D metamor-
phosis between the “bunny’s head” model and “tiger’s
head” model, as shown in Figure 10(a). These two
meshes are topologically equivalent to a sphere. Figure
10(a)-(c) shows an example of the control with only 5
CVPs and a partition control mesh which has 6 faces.
Figure 12(a) illustrates the results where in the mid-
dle of an interpolation, the tiger’s left ear is grown in
the middle of the bunny’s ear! An insufficient control
causes such a poor result. Figure 10(d)-(f) show an ex-
ample of finer control using 16 CVPs and a partition
control mesh of 24 faces. To interpolate between the
bunny’s ear and the tiger’s ear, 4 CVPs are specified
around the base of both ears. Figure 12(b) illustrates
the results where a more sophisticated control of the in-

Figure 9: Creating embeddings of tiles F 1
j and F 2

j .

terpolation is achieved.
Next, we examined a 3D metamorphosis between

two car bodies, from the “Delorean” model to the
“Porsche 911 Carrera” model, as shown in Figure 11(a).
These two meshes are topologically equivalent to a disk.
Figure 11(b) shows an example of the control with 40
CVPs and a partition control mesh of 29 faces. Figure
13(a) illustrates the result of the metamorphosis. The
tires are not included in the interpolation objects, being
translated and scaled by offline editing. Figure 13(b)-(c)
show a magnification of the results of the metamorpho-
sis of the right headlight and the right door-mirror. For
an interpolation of both headlights, 4 CVs are specified
at the rims of the shapes. Figure 13(b) shows that the
metamorphosis between different shapes is successfully
interpolated. For the interpolation between the door-
mirror and the flat shape, 4 CVs are specified at the root
of the door-mirror and at the corners of a rectangular
area of the other flat shape. Figure 13(c) shows that the
door-mirror grows from a flat shape.

For testing the robustness of our approach, we ex-
amined a metamorphosis between two large meshes.
Figure 14 (a) shows “star” model and “pai” (a karate
fighter) model. Both models are topologically equiva-
lent to a sphere, and have over 10,000 polygons. “star”
model is created by 3D modeler, “pai” model is recon-
structed from range images scanned by 3D digitizer.
Figure 14 (b) denotes an example of the control by

11

Examples Fig.12(a) Fig.12(b) Fig.13 Fig.14 Fig.15

M 1 nM 1
v 188 188 400 5,534 480

nM 1

f 372 372 738 11,064 960

M 2 nM 2
v 254 254 1,726 12,344 474

nM 2

f 504 504 3,311 24,684 948
nC

v 5 16 40 28 17
C nC

e 9 38 68 55 35
nC

f 6 24 29 29 18
M c nM c

v 1,865 2,320 9,724 77,269 4,965
nM c

f 3,726 4,636 19,265 154,534 9,930
Time Ts 24.6 104.4 99.7 169.23 109.1
(Sec.) Th 0.1 0.1 0.7 11.95 0.2

Tc 0.4 0.5 2.1 18.77 1.3

Table 1: Statistics for 3D metamorphosis examples. Ts, Th, and Tc denote the calculation of shortest paths, of
embeddings, and of combining two embeddings, respectively. All of the time data were collected on MIPS
R4400, 250MHz.

28 CVPs and 29 faces of a PCM which involves non-
triangular faces. Figure 14 (c) shows the result of the
metamorphosis.

Above three examples are for the case where the
genus of a mesh equals to zero (g = 0), that is, topo-
logically equivalent to a sphere (which may include
boundaries). But it is also possible to show the re-
sult of the metamorphosis between the “torus” model
and the “bottle” model. The genus of these two mod-
els equals to 1 (g = 1). We defined a partition control
mesh which has 17 CVPs and 18 faces. In addition to
the homeomorphism condition, those two models must
be “tamely homeomorphic”[3]. M 1 is tamely homeo-
morphic to M 2 if there is a homeomorphism of E3 onto
itself that carries M 1 onto M 2. This condition is re-
lated to "knots" of the mesh. Moreover we have to de-
fine proper partition control meshes. Although we can
not at this moment demonstrate the complete condition
of the proper partition control meshes for transforming
g ̸= 0 objects, we can say, at least from Figure 15, that
the partition control mesh must cover “holes” of the ob-
ject.

6 Discussions

6.1 Robustness

One part of our approach that the robustness should
be considered is the generation of embeddings (Section
3.1). As described in [10], the parameterization based
on Harmonic Mapping for generating embeddings does
not occasionally work well if the number of faces are
large. In our implementation, the number of faces to be
computed for the parameterization is much smaller than
that of the original mesh, because it is partitioned to a
set of tiles by a PCM. In Figure 14, the average number
of faces in each tile is approximately 1,000, the maxi-
mum is less than 3,000. In the actual calculation, that is,
29× 2 = 58 times computation for generating embed-
dings, a self-intersection occurs at only a tile which has
the largest number of faces. In our current approach, if
such a self-intersection occurs, it is checked before pro-
ceeding the next step, and is avoided by recomputing an
embedding with that κi, j in Equation (2) is set to be uni-
form constant. It produces a good result as described in
[10] 1.

The other geometric algorithm in our method that the
robustness should be taken care of is the combination
of two embeddings (Section 3.2). Kent et al.[16] point
out that for large meshes small numerical inaccuracies

1Recently, [9, 20] propose more robust and fast methods with re-
gard to the parameterization of the mesh such as Harmonic Mapping.

12

in the geometric computations such as line-to-line in-
tersections cause the failure of the construction of the
combined embedding. Our algorithm described in Sec-
tion 3.2 only need to judge an intersection between two
edges in the 2D unit circle (STEP1) essential for the
combined embedding construction, while Kent et al.’s
construction algorithm needs to judge intersections be-
tween two arcs. We think that it is also possible to ap-
ply an exact-arithmetic approach such as [29]. But even
in our implementation for combining embeddings us-
ing double floating point calculations, such numerical
inconsistencies do not occur for all of our examples.

6.2 Quality
Seen from the view of the correspondence, we can di-
vide the main component of our method which have
significant influences on the quality of the metamorpho-
sis into two different levels; one is user-specified vertex
correspondence level, and the other is the surface corre-
spondence level which is largely dependent on the pa-
rameterization.

In the vertex correspondence level, the quality of cor-
respondences can be improved by adding CVPs, or by
rearranging CVs on the mesh suitably. It can be noted
from our experiment that a rough correspondence be-
tween each feature part of two original meshes can be
established by specifying only several (three to four)
vertices along the boundary of such a feature part (the
base of the ear, the shoulder joint, etc.). If the user
wishes more sophisticated correspondences, additional
CVPs should be added in the internal region of a fea-
ture part (the top of the ear, an elbow joint, the wrist,
etc.), or along the boundary of a feature part. However,
it is also noted that too many CVPs densely specified in
a certain region do not improve the quality in the least,
but only require an extra time-consuming work. More-
over, it seems that a larger number of CVPs are not al-
ways needed for a larger number of faces in its orig-
inal mesh, if anything, that the number of features in
one mesh mainly determines the number of CVPs. The
more complicated shapes, the larger number of CVPs is
needed to establish a high-quality correspondence.

Our current strategy of the PCM creation is as fol-
lows; first, the user creates a rough PCM as small num-
ber of faces as possible. Next, a metamorphosis result
by a current PCM is displayed. CVPs are added along a
part of a PCM which causes a visually poor interpo-
lation, and reconstruct a part of a PCM along added
CVPs. These operations are repeated until the user can

achieve a satisfactory result.
In the surface correspondence level, the parameter-

ization based on Harmonic Mapping has the property
that minimizes the metric distortion of a triangle or
preserves the aspect ratio of a triangle, but that does
not preserve the area. Because of this, it can occur
that a large number of triangles are crowded at a nar-
row region (for example fingers in Figure 1). We rec-
ognize that his property causes an bad effect that the
surface correspondence of a tile is tends to be unbal-
anced within a paticular region(Gregory et al. propose
an alternative parameterization approach called area-
preserving mapping[12]). In our method, such an un-
balance of the parameterization can be avoided by spec-
ifying additional CVPs into the corresponding region.
For the shape in Figure 1, not only specifying CVPs
onto the base of a finger, but to specify onto a second
joint, or onto the top, are the better way to establish an
uniformly sampling surface correspondence.

6.3 Performances
For the user, the performance of specifying CVPs or of
creating a PCM largely depends on that of the graphics
display and thus on the number of faces in the origi-
nal mesh. the specification of CVPs itself is not quite
hard task because all the user must work is to pick
vertices on the mesh. Moreover, the user sequentially
picks CVPs to create a PCM with looking at the orig-
inal mesh, the creation of a PCM is not either a hard
task. The user only need to create a PCM for one of
two original meshes, because a vertex of a PCM (CVP)
is corresponded to each vertex of two meshes. In our
experiment with the prototype system, it takes about
several minutes to create a PCM in Figure 10 (b) and
(c). Even a PCM in Figure 14 (b) for large meshes can
be created within 30 minutes. In this example, a bottle-
neck is time for displaying the original mesh.

From the user’s point of view, there are two issues
which should be taken into consideration whether our
approach for creating a PCM is a really useful approach
for the user or not.

First, it maybe seem to be a rather cumbersome work
that the user must specify not only CVPs but a PCM
at the same time. We think, however, that it is case by
case whether this work needs. As described in Section
4.1, the creation of a PCM plays an important role for
the grouping of meshes used in the surface correspon-
dence. In the case that the user wants to establish the
surface correspondence between a feature region of one

13

mesh to a region of the other, the creation of a face in
PCM is equivalent to a clear specification of the sur-
face correspondence between two (rough) regions of the
feature. We also think that it is a natural and an impor-
tant process for the user to understand the surface cor-
respondence intuitively. If such a clear specification as
a region unit is not needed, a method for creating such a
region automatically from a curve net proposed by Gre-
gory et al.[12] seems to be useful for reducing tasks of
the user.

Second, it maybe seem to be a difficult task to select
vertices on each mesh so that two sets of sub-meshes
divided by a PCM are topologically equivalent. One
can say that the more CVPs are, the clearer this diffi-
culty appears. Even if it was so, such a difficulty could
be improved to some extents by specifying a certain
constraint in our strategy for creating a PCM. In our
strategy described in Section 6.2, once a rough (a little
CVPs) PCM is created, a constraint can be added for
selecting a vertex of M in the next addition of CVPs as
follows; when a vertex on a sub-mesh in one mesh is se-
lected, a corresponding vertex selected by the user must
be on a corresponding sub-mesh in the other mesh. For
the user, this constraint can be a guideline to select a
vertex easily for creating a CVP. On the other hand, the
process to create a rough PCM is a burden for the user,
while an invention, for example a rough PCM begins at
a tetrahedral, could be a help. This issue is one of future
works.

7 Conclusions and Future Work
We have introduced an efficient framework for mak-
ing 3D metamorphosis with user control of correspon-
dences, and have presented an algorithm for partition-
ing arbitrary meshes in order to utilize our method
for establishing surface correspondences based on har-
monic mapping. We have demonstrated a 3D meta-
morphosis between two topologically equivalent arbi-
trary meshes which include geometrically complicated
shapes.

We believe that the following future works is essen-
tial for improving the quality of these metamorphoses.

In our method, the number of faces of M c becomes
very large. Therefore, it is slow in displaying anima-
tion during metamorphosis. To establish real-time ani-
mation of metamorphosis, a method for decreasing the
number of faces without losing the surface features of
the original objects is needed.

We have primarily discussed the correspondence
problem, but we have not spent much time on the in-
terpolation problem. We noticed that our linear inter-
polation method can cause some problems (self inter-
section, shape distortion, etc.). Some approaches ad-
dress this problem ([28] for 2D polygon cases, [30] for
3D polyhedral polygon cases). Unfortunately, these are
useful only for cases where two models have quite sim-
ilar shapes. We hope to find an interpolation algorithm
that can work well with our correspondence algorithm.
We also think that it is quite difficult to avoid self-
intersections during the animation in any case. How-
ever, it seems to be possible to reduce or make them
unremarkable.

In this paper, we partition the mesh into tiles and ap-
ply the interpolation uniformly to all the tiles. We are
now extending the mesh to make non-uniform interpo-
lation by which each tile is interpolated individually.
This gives us more flexibility for deforming object’s
shapes.

Acknowledgements
A part of this research was supported by The Ookawa
Foundation for Information and Telecommunication.
The “bunny” mesh is from the Stanford University
Computer Graphics Laboratory. The “tiger”, “De-
lorean”, “Porsche 911 Carrera”, and “bottle” models are
courtesy of Viewpoint DataLabs. We wish to thank Tet-
suya Yamamoto and Jun Mitani, graduate students, the
University of Tokyo, for help in creating color results.
We would like to thank Kinji Odaka and members of
the development division, NABLA Inc. Japan, for their
useful comments. We would also like to thank all the
reviewers for making us a aware of references and giv-
ing us a lot of useful comments.

Note for readers
Some additional materials (images, movies and refer-
ences) are available via the internet:
http://www.riken.go.jp/lab-www/mat-
fab/personal/kanai/Gmorph.html

References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.

Data structures and algorithms. Addison-Wesley,

14

Reading, Massachusetts, 1983.

[2] T. Beier and S. Neely. Feature-based image meta-
morphosis. In Computer Graphics (Proc. SIG-
GRAPH 92), pages 35–42. ACM Press, New York,
1992.

[3] M. Boyer and N. F. Stewart. Modeling spaces
for toleranced objects. Int. J. Robotics Research,
10(5):570–582, 1991.

[4] J. Chen and Y. Han. Shortest paths on a poly-
hedron. In Proc. 6th ACM Sympo. on Compu-
tational Geometry, pages 360–369. ACM Press,
New York, 1990.

[5] K. Cheung, K. Yu, and K. Kui. Volume invarient
metamorphosis for solid & hollow rolled shape.
In Proc. Shape Modeling International ’97, pages
226–232. IEEE CS Press, Los Alamitos, Calif.,
1997.

[6] D. Cohen-Or, D. Levin, and A. Solomovici. Three
dimensional distance field metamorphosis. ACM
Trans. on Graphics, 17(2):116–141, Apr. 1998.

[7] D. DeCarlo and J. Gallier. Topological evolu-
tion of surfaces. In Proc. Graphics Interface ’96,
pages 194–203. Morgan Kaufmann, San Fran-
cisco, Calif., May 1996.

[8] H. Delingette, Y. Watanabe, and Y. Suenaga. Sim-
plex based animation. In N. M. Thalmann and
D. Thalmann, editors, Proc. Computer Animation
93, pages 13–28. Springer-Verlag, Berlin, 1993.

[9] T. Duchamp, A. Certain, T. DeRose, and
W. Stuetzle. Hierarchical computation
of PL harmonic embeddings. preprint,
University of Washington, July 1997.
http://www.math.washington.edu/∼duchamp/preprints/preprints.html.

[10] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. In Computer Graph-
ics (Proc. SIGGRAPH 95), pages 173–182. ACM
Press, New York, 1995.

[11] J. Gomes, L. Darsa, B. Costa, and L. Velho. Warp-
ing and Morphing of Graphical Objects. Morgan
Kaufmann, San Francisco, Calif., 1998.

[12] A. Gregory, A. State, M. Lin, D. Manocha, and
M. Livingston. Feature-based surface decom-
position for correspondence and morphing be-
tween polyhedra. In Proc. Computer Animation
98, pages 64–71. IEEE CS Press, Los Alamitos,
Calif., June 1998.

[13] T. He, S. Wang, and A. Kaufman. Wavelet-based
volume morphing. In Proc. IEEE Visualization
’94, pages 85–92. IEEE CS Press, Los Alamitos,
Calif., 1994.

[14] J. F. Hughes. Scheduled Fourier volume morph-
ing. In Computer Graphics (Proc. SIGGRAPH
92), pages 43–46. ACM Press, New York, 1992.

[15] T. Kanai, H. Suzuki, and F. Kimura. Three-
dimensional geometric metamorphosis based on
harmonic maps. The Visual Computer, 14(4):166–
176, 1998.

[16] J. R. Kent, W. E. Carlson, and R. E. Parent. Shape
transformation for polyhedral objects. In Com-
puter Graphics (Proc. SIGGRAPH 92), pages 47–
54. ACM Press, New York, 1992.

[17] J. R. Kent, R. E. Parent, and W. E. Carlson. Es-
tablishing correspondences by topological merg-
ing: A new approach to 3-D shape transformation.
In Proc. Graphics Interface ’91, pages 271–278.
Morgan Kaufmann, San Francisco, Calif., June
1991.

[18] M. Lanthier, A. Maheshwari, and J.-R. Sack. Ap-
proximating weighted shortest paths on polyhe-
dral surfaces. In Proc. 13th ACM Sympo. on Com-
putational Geometry, pages 274–283. ACM Press,
New York, June 1997.

[19] F. Lazarus and A. Verroust. Three-dimensional
metamorphosis: a survey. The Visual Computer,
14(8/9):373–389, 1998.

[20] A. W. F. Lee, W. Sweldens, P. Schröder,
L. Cowsar, and D. Dobkin. MAPS: Multireso-
lution adaptive parameterization of surfaces. In
Computer Graphics (Proc. SIGGRAPH 98), pages
95–104. ACM Press, New York, 1998.

[21] A. Lerios, C. D. Garfinkle, and M. Levoy. Feature-
Based volume metamorphosis. In Computer
Graphics (Proc. SIGGRAPH 95), pages 449–456.
ACM Press, New York, 1995.

15

[22] W. E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3D surface construction algo-
rithm. In Computer Graphics (Proc. SIGGRAPH
87), pages 163–169. ACM Press, New York, 1987.

[23] L. Lucas, F. Trunde, and N. Bonnet. Time-
dependent 3D data sets rendering: An extension
of the morphing technique. J. Visualization and
Computer Animation, 7(4):193–210, 1996.

[24] M. Mäntylä. An Introduction to Solid Model-
ing. Computer Science Press, Rockville, Mary-
land, 1988.

[25] J. S. B. Mitchell, D. M. Mount, and C. H. Pa-
padimitriou. The discrete geodesic problem.
SIAM J. Computing, 16(4):647–668, 1987.

[26] R. E. Parent. Shape transformation by boundary
representation interpolation: a recursive approach
to establishing face correspondences. J. Visual-
ization and Computer Animation, 3(4):219–239,
1992.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical recipes in C. Cam-
bridge University Press, Cambridge, UK, 2nd edi-
tion, 1992.

[28] T. W. Sederberg, P. Gao, G. Wang, and H. Mu. 2D
shape blending: An intrinsic solution to the ver-
tex path problem. In Computer Graphics (Proc.
SIGGRAPH 93), pages 15–18. ACM Press, New
York, 1993.

[29] K. Sugihara and M. Iri. A solid modelling system
free from topological inconsistency. J. Imforma-
tion Processing, 12(4):380–393, 1989.

[30] Y. M. Sun, W. Wang, and F. Y. L. Chin. Inter-
polating polyhedral models using intrinsic shape
parameters. In Proc. Pacific Graphics ’95, pages
133–147. World Scientific, Singapore, 1995.

Biography

Takashi Kanai is a special post-
doctoral researcher in the Institute
of Physical and Chemical Research
(RIKEN). His research interests in-
clude geometric modeling and its ap-
plication to Computer-Aided Design,
Computer Graphics. He received his
doctor degree in precision machinery
engineering from The University of

Tokyo in 1998. He is a member of ACM, IEEE CS, JSPE
(Japan Society for Precision Engineering) and IPSJ (Informa-
tion Processing Society of Japan).

Hiromasa Suzuki is an associate pro-
fessor in the Department of Precision
Machinery Engineering at The Univer-
sity of Tokyo. His research interests
include geometric modeling and phys-
ically based modeling, and their appli-
cations to mechanical CAD/CAM sys-
tems. He received his doctor degree in
precision machinery engineering from

The University of Tokyo in 1986. He is a member of JSPE,
JSME (Japan Society for Mechanical Engineering), IEEE,
ACM etc.

Fumihiko Kimura is a professor in
the Department of Precision Machin-
ery Engineering at the University of
Tokyo. He has been active in the fields
of solid modeling, free-form surface
modeling, and product modeling. His
research interests now include virtual
manufacturing, product life cycle en-
gineering, environmentally conscious

manufacturing, and preventive maintenance. He is involved in
ISO/TC184/SC4, and is a national representative of IFIP TC5,
a member of IFIP WG5.2, WG5.3, and an active member of
CIRP. He graduated from the Department of Aeronautics, the
University of Tokyo, in 1968, and received a Dr.Eng. degree
in 1974.

16

(a) (b) (c)

(d) (e) (f)

Figure 10: Surface correspondence controls. (a)-(c) and (d)-(f) are different controls specified by the user. (a)
5 CVPs (green spheres). (d) 16 CVPs. (b) Partition control meshes C 1,C 2 (5 vertices, 9 edges (yellow pipes),
and 6 faces). (b) Partition control meshes C 1,C 2 (16 vertices, 38 edges, and 24 faces). (c),(f) Partitioned meshes
M̂ 1,M̂ 2. Red lines indicate the shortest paths.

(a)

(b)

Figure 11: Metamorphosis from the “Delorean” model to the “Porsche 911 Carrera” model. (a) Original meshes
M 1 and M 2. (b) Partition control meshes C 1 and C 2 (40 vertices, 68 edges, and 29 faces).

17

(a)

(b)

Figure 12: Result of metamorphosis from the “bunny’s head” model to the “tiger’s head” model. (a) and (b)
indicate the results of the metamorphosis with the user control shown in Figure 10(a)-(c) and in Figure 10(d)-(f)
respectively. In the upper right figure of (a), the tiger’s ear is sticking out from the middle of the bunny’s ear. By
refining the partition control mesh as shown in Figure 10(e), this undesired deformation is removed as shown in
(b).

18

(a)

(b)

(c)

Figure 13: Result of metamorphosis from the “Delorean” model to the “Porsche 911 Carrera” model. (a) Views
of the whole shape. (b) Magnifications of a headlight region. (c) Magnifications of a door-mirror region.

19

(a) (b)

(c)

Figure 14: Metamorphosis from “star” model to “pai” model, both of which have large faces. (a) Original meshes
M 1 and M 2. (b) Partition control meshes C 1 and C 2 (28 vertices, 55 edges, and 29 faces). (c) Result of meta-
morphosis.

Figure 15: Result of metamorphosis from the “torus” model to the body of the “bottle” model as a simple example
of the non-zero genus (g = 1) objects. We have defined 17 CVPs. and a partition control mesh (17 vertices, 35
edges, and 18 faces) for the control of surface correspondence.

20

