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Abstract

In this paper, we propose a novel data-driven method that uses a machine learning

scheme for formulating fracture simulation with the Boundary Element Method (BEM)

as a regression problem. With this method, the crack-opening displacement (COD) of

every correlation node is predicted at the next frame. In our naive prediction, we design

a feature vector directly exploiting stress intensities and toughness at the current frame,

so that our method predicts the COD at the next frame more reliably. Thus, there is no

need to solve the original linear BEM system to calculate displacements. This enables
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us to propagate crack-fronts using the estimated stress intensities. There are existing

works which use the machine learning approach to accelerate the speed of traditional

physics-based simulations like smoke and fluid, but our work is the first to incorporate

the machine learning scheme into BEM-based fracture simulations. Our implemen-

tation accelerates the acquisition of displacements in linear time over the number of

crack-fronts at each time step compared with the conventional solution whose time

complexity grows exponentially based on the BEM linear system. The databases gen-

erated by our method are versatile, and can be applied to general situations and different

models.

Keywords: Brittle Fracture, Boundary Element Method, Data-Driven, Regression Forest
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1 Introduction

Rigid body fracture simulation is playing an increasingly important role in computer graph-

ics applications such as games, movies, etc. A number of approaches for simulating the

fracture of objects have been proposed in the past. Among them, one of the most used

methods is the geometry-based method which employs pre-defined fracture patterns for the

object when fractures are needed. However, this method is unable to carry out accurate

physical computation.

Physics-based methods (including finite element method, mass-spring system, and mesh-

less method) have excellent accuracy in expressing fracture patterns which reflect natural

phenomenon better than geometry-based approaches. However, these methods cannot well

describe details of fracture patterns like fracture surfaces. There are several methods for

dealing with such issues such as re-meshing which can be used to increase details on frac-

ture surfaces, but these methods are costly due to complex mesh manipulations.

Recently, physics-based fracture simulation by the boundary element method (BEM) is

being proposed [1]. This BEM method can well capture fracture surface details using a

sheet of triangles. In addition, the number of elements for simulation can be reduced by

using surface mesh instead of volumetric mesh. However, it is more inefficient to solve

dense linear systems using the finite element method (FEM) compared to solving sparse

linear systems with BEM. The costs of calculating displacements increase when the number

of crack-fronts increases or when the fracture is complicated in BEM analysis. Although
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a fast approximation method to estimate displacements for BEM-based simulations was

proposed by the same authors [2], the linear system still has to be solved for each frame of

a simulation.

In this paper, we explore a totally different approach based on machine learning for the

simulation of brittle fracture surfaces. There are existing works which use the machine learn-

ing approach to accelerate the speed of traditional physics-based simulations like smoke and

fluid, but our work is the first to incorporate machine learning scheme into BEM-based frac-

ture simulations. With our method, instead of solving the linear system for each frame of

fracture surface simulation, the approach of learning and predicting is taken. In particular,

we use a database to predict crack-opening displacements (COD), a parameter for solving

linear equations. It enables us to approximate brittle fracture surfaces without solving linear

equations.

To predict CODs, we adopt the regression forest [3] machine learning approach. With

this approach, it is very important to determine the feature vector for ensuring good per-

formance of regression forest, and consequently accurate prediction of CODs. Here we

discuss feature vectors that can fully describe all the information needed to determine the

next frame’s COD, which will be used for computing stress intensities for propagation.

Compared with our previous work [4], this paper attempts to extend our method to create

a versatile database, which can be applied to more general situations and models different

in nature. Generating the database of complicated models is expensive and time-consuming

due to the need to conduct simulations and training of regression forests. Our aim is to gener-
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ate a database from simple models like Cube models, which can be applied to the simulation

of the fractured surfaces of complex models like that of an Armadillo. To achieve this aim,

we redesign the feature vector to realize scale independence in models with different sizes,

and regenerate databases with the new feature vector.

2 Related work

2.1 Geometry-based Fracture Animation

Terzopoulos and Fleischer [5] first proposed fracture models in the computer graphics area.

One approach for fracturing objects is the geometry-based method, also known as pre-

defined model, which is a very popular method commonly used in computer games or

movies. Fracture patterns pre-defined by users are applied when the fracture phenomenon is

needed or strong collision occurs. The generation of pre-defined fracture patterns requires

tools that can control size as well as the shape of fractured fragments like Voronoi dia-

gram. For example, Raghavachary [6] describes a method of generating fracture fragments

under the principle of Voronoi tessellation. Neff and Fiume [7] propose a fracture model

which allows rapid fracture by dividing a plane into fragments with the shape of polygon

after the user specifies a specified angle. Mould [8] also presents an image filter where the

input is a drawing line constructed using Voronoi diagram. Based on this, the image of

fractured surface is output. Although geometry-based approach allows users to control the
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fracture patterns, the fractures cannot reflect natural phenomenon dynamically. Also, the

pre-defining step requires considerable preparation for designing fracture patterns. Müller

et al. [9] presents a method for resolving such issues by aligning a pre-defined fracture

pattern with an impact location, allowing fast dynamic fracture of objects.

2.2 Fracture Simulation

Accurate simulation of fracturing objects is another approach of generating fractures in

objects. The mass-spring system is one of the simplest method for simulating objects to be

fractured. Within this system, the object is viewed as a set of particles with mass and position

connected by springs in pairs. Norton et al. [10] modeled objects from simple lattice cubic

cells, then generated fractures by breaking the link between cubes. Hirota et al. [11] used

the mass-spring model to generate crack fracture patterns like drying surface layer for many

objects like surface of roads and drying mud. Mazarak et al. [12] simulated explosions

using connected voxel representation of objects which make the explosions more realistic

by replacing flat artificial slices with more natural volumetric segments. Mass-spring models

are sometimes popular due to their simplicity in modeling, but it is hard to describe physical

quantities like strain and stress using the mass-spring system. Also, the orientation of the

fracture plane cannot be defined.

Finite element analysis can well depict stress and strain relationships. O’Brien and Hod-

gins [13] proposed brittle fracture simulations with the finite element method (FEM). Later,

6



O’Brien et al. [14] again presented ductile fracture as well. Although FEM can well define

the orientation of fractures, it cannot determine the forward direction of crack tips. Besides,

this method also suffers from artifacts due to stress-based fracture criteria. On the other

hand, Müller et al. [15] proposed a hybrid method where static analysis is independent of

time-step allowing simulating of fractures of objects in real-time. Bao et al. [16] treated ma-

terial as fully rigid body to solve issues introduced by small time step restrictions. Glondu et

al. [17] used modal analysis to initiate and propagate cracks with energy based algorithms.

Their approaches are based on non-linear FEM analysis where the object is represented as

discretized tetrahedral meshes.

The boundary element analysis of fractures by representing objects as triangle meshes

has been proposed recently. Rather than simulating fractures with finite elements, our re-

search is based on the boundary element method developed by Hahn and Wojtan [1] where

displacements are computed directly by solving the resulting dense BEM system. Later,

they proposed fast approximations of displacements and stress intensities for simulating

BEM-based fractures [2], but a linear system still has to be solved. Zhu et al. [18] presented

fractures with surface meshes by solving the layer potential, after which stress analysis is

performed with displacements by integrating potentials.
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2.3 Data-Driven Approach for Simulations

Various types of data-driven based approaches for speeding up fluid simulations have been

explored. A data-driven based approach that formulates fluid simulation as a regression

problem with regression forest has been proposed, where the acceleration of a particle

for each frame is predicted using a trained regressor [19]. The projection step is a time-

consuming step in grid-based fluid simulation. Yang et al. [20] proposed a data-driven ap-

proach with artificial neural network (ANN) to migrate iterative computational costs, where

the results of the projection step can be obtained in constant time for each grid cell. The

operator splitting method within standard fluid solvers has to solve ill-conditioned linear

equations, and the Convolutional Network (ConvNet) serves as a subsitute for realizing fast

and realistic simulations [21].

These researches aim to accelerate fluid simulation with data-driven based approaches.

However, there are very few researches presented for brittle fracture simulation. By com-

bining learning methods with physical brittle fracture simulation, our research has obtained

fast and highly similar results as traditional solvers.

3 Simulating Brittle Fractures with Boundary Elements

This section briefly reviews brittle fracture simulation with boundary elements from the

previous works of Hahn and Wojitan [1]. We describe their work especially from the view

of constructing brittle fracture surfaces including crack initialization and crack propagation.
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Starting from a given highly detailed surface triangle mesh, it is transformed to a coarse

mesh (called BEM mesh), which is used in BEM linear system computation. Known bound-

ary conditions are then applied to a BEM mesh, and an initial BEM linear system in Equation

(1) is then obtained [22]. Surface stress with displacements can be computed, and the new

cracks will be initiated if the element’s principal stress is larger than material strength, V −K

KT D


q

u

 =

fD

fN

 , (1)

where u and q refer to displacements of boundary and tractions, which are unknown vari-

ables, and the known coefficient matrices including matrix blocks V,K,D are determined

by initial mesh structures. In particular, V is a symmetric positive definite matrix. The right

hand side of the linear system is known boundary data including the Dirichlet and Neu-

mann boundary that specifies the boundary values along the boundary of the computational

domain. They use Schur complements to solve this system (see Equation (5.18) in [22]).

A new linear system is launched where the new cracks are added during crack prop-

agation in Equation (2). This is from the formulation of Symmetric Galerkin Boundary

Element Method (SGBEM) in [23], which solves for crack-opening displacements (CODs)

∆u, norm of which is the distance between two faces with opposite surface normals of the

crack, 
V −K −Kc

KT D Dc

KT
c DT

c Dcc




q

u

∆u

 =


fD

fN

0

 . (2)
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The sizes of matrix blocks Kc,Dc,Dcc and ∆u become larger accordingly when new cracks

are added to the BEM mesh, whereas the matrix elements V,K,D computed beforehand

remain unchanged.

Crack-opening displacements ∆u are obtained by solving Equation (2), and then stress

intensities are calculated by the displacement correlation technique from [24],

KI = µ
√

2π
∆uI√

r(2− 2ν)
,

KII = µ
√

2π
∆uII√

r(2− 2ν)
,

KIII = µ
√
π

∆uIII√
2r
,

(3)

where ν is a Poisson’s ratio, µ is a Lamé parameter, and r is the distance from a correlation

point to its corresponding crack-front as illustrated in Figure 1. ∆u is evaluated at the

correlation node which is the interior node of a triangle that contains the crack-front edge.

Then ∆u is projected onto a local coordinate system (x, y, z) of the crack-front, thereby

resulting in the acquisition of ∆uI, ∆uII, and ∆uIII.

Effective stress intensities are then calculated as Keff
2 = KI

2 + KII
2 + KIII

2/(1 − ν),

to determine whether the cracks should propagate. Material toughness is defined as Kc
2 =

2γE/(1− ν2), where E is Young’s modulus and γ is the material surface energy (see paper

[25] for details). Cracks propagate if Keff ≥ Kc. The detailed crack propagation including

propagation speed and direction is described in [1].
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4 Data-Driven Simulation of Fracture Surfaces

The BEM-based brittle fracture simulation summarized in Section 3 is physically accurate.

However, the cost becomes very expensive when solving the BEM linear system for crack-

opening displacements (CODs) in each step of the simulation with the number of crack-

fronts increasing. This section introduces prediction-based approximation of crack-opening

displacement instead of solving linear equations.

4.1 Predicting Crack-Opening Displacements with Regression Forest

Previously, fracture simulations using the BEM solver were performed by solving linear

equations at each step. However, it is very costly to solve linear equations every time the

COD is changed. In addition, the time cost also becomes larger accordingly when CODs

get larger. q and u are changed at each frame in Equation (2), but they are not used for crack

propagation. On the other hand, ∆u is necessary for obtaining stress intensities during crack

propagation. We thus only estimate CODs through our prediction method, where we regard

q and u as unchanged value and zero respectively.

To predict CODs, we adopted the machine-learning approach using regression forest

[3]. Reasons why the use of regression forest is appropriate are; (1) it can handle continuous

values for predictions such as CODs, (2) it can fit large-scale data, and (3) both training and

prediction can be carried out quickly.

Feature vector design. What is to be addressed here is how to design the feature vectors
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for regression forests. By calculating stress intensities through crack-opening displacements

in Section 3, we know they have strong relevance with CODs where CODs need to be

exploited to calculate stress intensities. Thus we consider using stress intensities as part

of our feature vector, where stress intensities at the current frame determine CODs at the

next frame. Our feature vector should well describe the factors influencing the jump of

two fracture surfaces. Three candidate feature vectors were tested in our research, namely

(KI, KII, KIII), (KI, KII, KIII, Kc) and (KI, KII, KIII, Kc, r) respectively. Kc is the toughness

set for material, which is constant of some models, or changeable for some other models. r

is distance for which the crack-front has propagated. The toughness also affects the CODs

of the next frame if it is a variable. Larger CODs are obtained with smaller toughness. We

chose the most proper feature vector (KI, KII, KIII, Kc) from the above three candidates, and

conducted experiments described later.

The restriction for fast regression methods is the need to calculate feature vector con-

stantly. Stress intensities, toughness, and distance can all be calculated in constant time.

This is the linear-time calculation taken according to the number of crack fronts for each

frame when estimating CODs.

4.2 Overview of Our Method

Figure 2 shows an overview of our method. In this figure, we list both the BEM-based frac-

ture simulation system and our data-driven based fracture simulation process respectively.
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Our method aims to replace the original BEM solver with our regression forest based pre-

diction. We only perform physical computation with the BEM solver at the first frame, and

then prediction from the second frame.

We propose a novel data-driven method that uses a machine learning scheme which

predicts projections ∆uI,∆uII,∆uIII of the correlating node of the crack-opening displace-

ment of the next frame onto the local coordinate system of the current frame’s crack-front.

We designed a feature vector with stress intensities KI, KII, KIII and material toughness Kc

of the current frame’s crack-front containing information on determining the next frame’s

crack-opening displacements of correlating nodes.

However, we do not predict crack-opening displacement ∆u directly in our implemen-

tation. Instead, we use its projections ∆uI, ∆uII, ∆uIII onto the local orthonormal coordinate

system of the current frame’s crack-front as our label. Crack-opening displacement (COD)

is defined in the world coordinate system, however, stress intensities are calculated in the

local coordinate system of the crack-front. The direct use of CODs as our label is not proper

since the CODs in the world coordinate system are rotation-variant values. We thus use

their projections onto the local coordinate system for crack-fronts, to ensure that our naive

prediction is performed at the same coordinate system.

Furthermore, we apply normalization rules to KI, KII, KIII and ∆uI, ∆uII, ∆uIII in the

local coordinate system to reduce the influence of the BEM mesh size. The results of several

experiments indicate that the distance unit ∆u relies on the size of models. Error will occur

when we apply a small-size database to big-size models. Based on Equation (3), there is
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unit dimension difference of 1√
r

between KI and ∆uI (also KII and ∆uII, KIII and ∆uIII) after

excluding dimensionless quantities. Therefore, we apply division by
√
r toKI, KII, KIII, and

by r to ∆uI, ∆uII, ∆uIII, where r refers to the resolution of the BEM mesh. Distance r for

which the crack-front has propagated will change in each time step, so that the distance of

BEM mesh resolution r is appropriate for normalization. The material toughness Kc does

not differ amongst models with different resolutions, so we count Kc out when applying

normalization rules.

With predicted projections of CODs which are multiplied by r, we then convert projec-

tions to the COD of the next frame through the transformation from the local coordinate

system to the world coordinate system. Approximated CODs of correlating nodes at the

next frame are then assigned to corresponding crack-fronts. Stress intensities can then be

acquired through the displacement correlation technique in Section 3. The crack propaga-

tion proceeds in the same way as the previous BEM-based fracture simulation of [1].

4.3 Training Samples Creation and Learning Stage

Figure 3 shows the creation process for training samples. We usually create a large number

of training samples by executing BEM-based simulation many times where we use random

force directions with different magnitudes as our initial conditions for BEM-based fracture.

For each direction with a force magnitude, we obtain a set of training samples under this

condition. Our training for regression forest is done with the method as in [3] by creating
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a set of decision trees learned for each subset in the training stage and by averaging all

predictions from individual trees as final prediction. At the training stage, subsets from

the original dataset are constructed with the bootstrap aggregating approach, where each

training sample of the subset can be chosen randomly with replacement.

A training sample is defined as,{(
K

(n−1)
I√
r

,
K

(n−1)
II√
r

,
K

(n−1)
III√
r

,K(n−1)
c

)
→ ∆u(n)

i

r

}
, (4)

where K(n−1)
I , K

(n−1)
II , K

(n−1)
III , K

(n−1)
c refers to stress intensities and material toughness of

the crack-front at current frame n− 1, r refers to the resolution of the BEM mesh among all

frames, and ∆u(n)
i refers to the projections of the COD of the interior node at the next frame

n, and i = I, II or III, which are three axes to which COD is projected onto.

In our implementation, we do not directly predict three projections with only one re-

gressor, instead we split our training data into three parts, where each part only contains one

projection as the label. Thus we have three regressors which are used to predict anyone of

the three projections when inputting the same feature vector.

5 Results and Discussion

We perform experiments on a desktop PC with Intel R© CoreTM i7-2600 3.40GHz CPU and

32GB RAM. We evaluate our method mainly by comparing our data-driven based results

with BEM-based fracture simulation results. We have five different databases, namely Cube

database, Cylinder database, Armadillo database and bar database. We will describe how
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to construct them later. For BEM-based brittle fracture simulation, we use FractureBEM

source code [26] provided by the authors of [1] and HyeNA library [27] provided by the

Institute of Applied Mechanics, Graz University of Technology. In the training and predic-

tion stage, we also use the source code [28] provided by Machine Perception and Robotics

Group, Chubu University as our regression forest implementation. We only consider two

important parameter settings, which are the number of trees t and maximal depth of the tree

d in the training stage. In later discussions, we denote such parameters as (t, d).

All experiments are simulated based on the following parameters: Young’s modulusE =

3.1 × 109Pa, Poissons ratio ν = 0.327, density ρ = 1200kg/m, tensile strength (principal

stress at surfaces) Sc = 7.6 × 107Pa and fracture toughness (stress intensity at crack-tips)

Kc = 1 × 106Pa. The size of the Armadillo model and Bar model is approximately 100

times bigger than the size of the Cube and Cylinder models. The edge length of the Cube

model is 1m and the diameter of the Cylinder model is 1m.

Prediction of Cube fractures. As discussed in Section 4.3, the training samples are created

by changing the direction and magnitude of forces applied to objects. For directions and

magnitudes of forces applied to the Cube model, we here created any direction which is

sampled randomly within the range of hemisphere and any magnitude which is between two

different hemispheres’ radii.

Figure 4 shows how to generate different forces randomly. This figure only illustrates

the force at one side. At another side, there is a force which has the same pull intensity but
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acts from a different direction. Both are applied to cube at the same time. For each force

generated by our random process, we obtain a set of training samples through a BEM-based

simulation. For the Cube database, we have 992,976 training samples. The force is applied

on the same face of a surface every time.

We first test the Cube database with our prediction method on a Cube triangle mesh by

applying forces with the same magnitude but different directions whose α = 0, 45 and 90

degree and β = 0 degree as our initial condition, where α is the slope angle and β is the

rotation angle as illustrated in Figure 4. Parameters including the number of trees and the

maximal depth of regression forest are (50,10) for the Cube database in the training stage.

The results of our method compared with the BEM-based simulation are shown in Figure

5. In this figure, fracture patterns at the last frame for different directions of initial forces

applied to Cube are shown. In the first two columns (a) and (b) of the figure, one half of

the split Cube is shown. In the third column (c), un-fractured Cube is shown whose inner

shaded surface is the fracture surface. It can be seen that our method can well approximate

the BEM-based simulation results.

In the third column (c), the slopes of the fracture surfaces differ between the BEM-

based simulation results and our data-driven prediction results. Since the experiments in

this research focused on the pulling scene, our parameters of force direction were mainly

set to 0 degrees and the surrounding direction. This always realizes stable fracture surface

shapes. Furthermore, in the BEM-based simulation results where the force direction was

set to 90 degrees, the shape of fracture surfaces changed suddenly, even though there was
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only a small difference in the force parameters (initial boundary conditions) between 89

and 90 degrees. Therefore, the prediction of the database based on the results with the

force direction set to 90 degrees does appear to be similar to the BEM-based result as the

predictions with 0 and 45 degree forces are.

Figure 6 shows logarithmic graphs of 0 and 45 degree’s stress intensities by our method

and BEM-based simulation. In these graphs, “KI BEM”, “KII BEM”, and “KIII BEM” refer

to stress intensities obtained by the BEM-based fracture simulation. On the other hand,

“KI multi D”, “KII multi D”, and “KIII multi D” represent stress intensities obtained by our

prediction method with random database. The results show that our method can obtain good

estimates for stress intensities. Although the difference of KIII between our method and

the BEM-based fracture simulation seems larger than that of KI and KII, KIII is a smaller

scaled value compared with KI and KII, thus we still consider that the difference is not so

large. Furthermore, according to Table 1, which shows the statistics for the coefficients of

stress intensities obtained by the BEM-based fracture simulation before the training stage,

the coefficient of variation of KIII of training samples is larger than that of KI and KII. Since

the Cube database is trained by these training samples, it seems natural that the prediction

of the Cube database KIII has larger variation than the prediction of the Cube databases KI

and KII.

Prediction of Cylinder fractures. To evaluate the reproducibility of training samples ob-

tained by random forces generated for different shapes, we created a database for a Cylinder
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model by changing both the force magnitudes and directions, which is the same method as

creating the Cube database.

For the Cylinder database, forces are simultaneously applied to the top and the bottom

of a round surface area of a Cylinder model. The number of sample nodes of the Cylinder

database is 492,373 with regression forest parameters (50,10). For the Cylinder database, we

apply forces with the same magnitude as the Cube database but from different directions as

shown in Figure 4. Since the Cylinder model does not crack in both BEM-based simulation

and prediction when applied with forces from directions whose α > 80 degree and β = 0

degree, we simply test the Cylinder database using the Cylinder model with force directions

whose α = 0, 45, 80 degree and β = 0 degree. Figure 7 shows the comparison between

BEM-based simulation result and our prediction result for the Cylinder model. Through the

Figures 7 (a) to (c), the prediction results using our method in the bottom row reproduce the

slope of the fractured surface and the height from the bottom faces to the fractured surfaces.

Also, the details of the fractured surface patterns are similar.

This result shows that the prediction results for the Cylinder modes reproduce the typical

characteristics of a fractured surface. Thus our method can be applied to both Cube and

Cylinder models, and fractured surfaces can be well approximated, as shown in the middle

row as well as the bottom row of the figures.

Other models. We also evaluate our method on an Armadillo model and a Bar model with

their respective databases.
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We create databases for the Armadillo and Bar models by changing only the force mag-

nitudes for the same direction. For the Armadillo database, we simulated with 150 different

pull intensities for the horizontal direction. The number of sample nodes is 12,611 with

regression forest parameters (10,10). On the other hand, for the Bar database we simulated

with 150 different pull intensities for the perpendicular direction. The number of sample

nodes is 71,323 with (50,10) as our regression forest parameters.

Figure 8 shows the comparison between BEM-based simulation result and our prediction

result for the Bar model. Figures 10 (a) to (c) show the comparison between BEM-based

simulation result and our prediction result for the Armadillo model. The results confirm

that our method is able to accurately estimate fractured surfaces as shown by (b) and (c)

of Figures 8 and 10 respectively. Although there is some difference between Bars fractured

surfaces at the left bottom, it seems natural to have such differences. In our naive prediction,

we only predict ∆u rather than u which is set zero. Thus, the prediction of Bars fractures

does not have bending deformation after the second time-step frame while the BEM-based

simulation does, resulting in these differences in the fractured surfaces. Nevertheless, we

still carry out the BEM-based simulation at the first time-step frame in our method. Initial

deformation still occurs on the other part of the Bar model, such as the top slope which is

not touched by the crack surface. To interpolate the crack surface and the other parts of the

model during visualization, the prediction results of such deformations at the top slope with

our prediction method differ slightly from BEM-based simulation result.
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Predicting Cube fractures under three loading modes. In previous experiments, we per-

formed prediction based fracture simulation for all models using their respective databases.

We now only use the random Cube database to test the Cube model whose loading mode

for crack propagation is different from previous fracture. For the Cube database, the same

database created randomly in the previous experiment described above is used.

Figure 9 shows a Cube model where the Cube initiates its cracks with a planar edge-

crack under loading modes I, II, and III. The three loading modes are defined in [25] and

illustrated in the first row of Figure 9. Mode I represents the crack-opening along the perpen-

dicular direction of the fracture surface, mode II represents the crack-opening sliding along

the normal direction of the crack-front, and mode III represents tearing along the tangental

direction of the crack-front.

The result shows that we can use the same Cube database to predict three loading modes.

Even though the prediction results of mode II and mode III shown in the second and third

columns of Figure 9 are not the same as the BEM-based simulation results, the prediction

results show that the three loading modes tend to demonstrate the expected crack propaga-

tion behavior, as shown in the first row of Figure 9, indicating good prediction performance.

It should be emphasized that the Cube database prediction method cannot predict exactly

the same shapes as the BEM-based simulation method without a specific database. In or-

der to completely predict BEM-based simulation results with three loading modes, a specific

database trained for the loading situation of each of the three modes is needed. It should also

be noted that the Cube database prediction method using only training samples with random
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pick-up direction forces can also represent the expected crack propagation behavior, which

is the principal behavior in fracture mechanism. Generally, while the force is applied, a dis-

placement will be created with the same direction as the force’s. Since the feature vector has

been designed to reduce the influence of both direction and length as described in Section

4.2. The Cube database has been trained to predict the correlation of stress intensities and

displacements. Therefore, there is potential to use the same Cube database to well predict

other situations.

Predicting Armadillo fractures with other databases. In the previous experiment, we

found that the same Cube database may be used for well predicting other situations. There-

fore, we use the Cube and Cylinder databases to predict Armadillo models, and compare

the results of the Cube and Cylinder databases with those of the Armadillo database. The

results shown in Figure 10 are computed for the Armadillo model with the same initial force

and respective databases.

For the Cube database, the same database created randomly in the previous experiment

described above is used. For the Cylinder database, we use the databases generated in the

experiments above. Figure 10 (a) shows the initial force that we used to test the databases.

Figures 10 (b) to (e) show the results of BEM-based simulations, prediction using the Ar-

madillo database, prediction using the Cube database, and prediction using the Cylinder

database.

The results in Figure 10 (e) curve outwards in the whole surface region, which shows
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that the shape of the Armadillos fractured surface generated by the Cylinder database cannot

be well predicted as the Cube database. Even though the fractured surfaces predicted by the

Armadillo database in Figure 10 (c) is more similar to the BEM-based fractured surface

in Figure 10 (b) than that predicted by other databases in terms of the patterns of fracture

surface. All of the results in 10 (c) to (e) reproduce acceptable patterns and shapes of the

Armadillo fractured surface in 10 (b). The results show that we can still use the same Cube

database to well predict other crack propagation situations which are not in the database

compared with BEM-based simulation. With our method, we can well predict the nature of

the pattern of crack propagation, which fits any models or situations of crack propagation.

Even though the Cube database works well for predicting the fractured surfaces of Ar-

madillo models, further analysis of the Cube database is required to clarify its mechanism

of versatility, and we will conduct this in future work.

Comparisons of crack propagation process between Armadillo and Cube fractures. In

previous experiments, we compared the final surfaces between BEM-based simulation re-

sults and our prediction results with several models like Cube and Armadillo models. How-

ever, the process of crack propagation must also be compared and discussed. Therefore, we

used the prediction results obtained from previous experiments using Cube and Armadillo

databases for comparing BEM-based simulations in each timestep frame, and selected three

frames for Cube and Armadillo models respectively.

Figure 11 shows the comparison between the two crack-propagating process results
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shown in the second and the third rows in Figure 5 (a). Figure 12 shows the comparison

between the two crack-propagating process results of (b) and (c) in Figure 10.

According to the results shown in Figure 11 and Figure 12, we found that the speed

of crack propagation and the shape of fracture surfaces are similar between prediction re-

sults and BEM-based results in each timestep frame for the Cube and Armadillo models

respectively.

The number of frames until fracture is completed in both prediction results and BEM-

based results for Cube experiments shown in Figure 5 (a) are 13. We picked the 1st, 6th, and

11th frames to represent the process of crack propagation of Cube database experiments in

Figure 11.

In the Armadillo experiments shown in Figure 10 (b) and (c), the number of frames until

fracture is completed in BEM-based results is 16, and the number of frames in prediction

results is 11. However, the speed of crack propagation of these two experiments is similar

through the preceding 11 frames between BEM-based results and prediction results. The

results show that our proposed method can reproduce the speed of crack propagation in pre-

diction. Since the crack propagation of the Armadillo model after 5th frame is extremely

slow and any difference between BEM-based and prediction fractures after 10th frame is dif-

ficult to find without detailed observation, the reason of earning different numbers of frames

in BEM-based simulation and our prediction method is not the speed of crack propagation,

but the stopping time of crack propagation. Even though the determination mechanism of

stopping of BEM-based simulation is the same as that of our prediction method, feedback
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cannot be controlled if the BEM linear system is not used in our prediction method, which

causes the prediction process to stop crack propagation faster than the BEM-based simula-

tion method.

In conclusion, our prediction method can reproduce the speed of crack propagation. The

number of frames until fracture occurs with our prediction method may not be the same as

that in BEM-based simulation, even though the main process of crack propagation occurs

in the preceding several frames for both our prediction results and BEM-based simulation

results.

Feature vector selection. In Section 4.1, we noted that there are three candidate feature

vectors including (KI, KII, KIII), (KI, KII, KIII, Kc) and (KI, KII, KIII, Kc, r) respectively.

We explain here why we select (KI, KII, KIII, Kc) as our feature vector through experiments.

In order to simplify the experiment process, we construct a database by only changing the

magnitude of force instead of direction. The number of training samples is 9,328, and

the parameters for regression forest is (10,10). Figure 13 shows the comparison between

the results of BEM-based simulation and our prediction results with three features, four

features, and five features. It can be seen that the fracture appearances of our prediction

method with four features and five features are more similar to that of BEM-based fracture

simulation than with three features. Finally, we select our feature vector with four features

by a trade-off between memory and computation time.

Training sample selection when generating databases. We explain here what should be
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noted when creating a database.

The results of past experiments have shown that the prediction of cracks is not always

successful with the application of an initial force in BEM-based fracture simulations. Pre-

dictions often fail in the use of databases of training samples containing situations of the

generation of a large number of small cracks or situations where cracking is non-stop. Most

of the BEM-based simulations applying force directions (e.g. the direction whose α = 90

degree and β = [0, 360] degree) do not cause fractured surfaces or cause small cracks in

Cube and Cylinder models. In many cases, these simulations can simulate cracks over 80

frames or non-stop cracking situations, while most simulations normally cause cracks of

only 10 frames in our test configuration. Such cases which contain small cracks and do not

stop cracking are outside the scope of our interests in the prediction of patterns and shapes

of fractured surfaces. The resultant training samples are chaotic, and will influence the other

traning samples in our database training set. These cases which are not acceptable for pre-

dicting shapes and patterns of fractured surfaces should be excluded from training sample

sets.

For the Cube and Cylinder models, BEM-based simulation with force directions whose

α = 90 degree and β = [0, 360] cracks as shown in Figure 5. We stop cracking when there

are more than 31 frames, while most of the simulations stop in 20 frames. For the Cube

model, there are some BEM-based unnatural simulation cracks in small cracks with force

directions whose α is nearly to 90 degree and β = [0, 360]. We exclude all these training

samples with such force directions. It is important to set the appropriate limitation of force
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directions and maximum simulation frames should be noted when generating database.

Though the versatile database created by our method predicts well in most situations

and models, there are many optional cracking configurations like the maximum number of

initial crack points and the limitation option of face cracking or line cracking. We should still

train a database adapting the specific model and cracking configuration every time a highly

similar fractured surface with better details compared with the BEM-based simulations is

needed.

Parameter settings when training databases. We explain here what should be noted when

setting parameters before training a database.

Parameters of regression forest [3] usually depend on the number of training samples.

Trees with larger leaves can explain situations predicted by regression forests better. Taking

t to be the number of trees and d the maximal depth of tree, a set of two parameters (t, d)

can determine the maximum total number of leaves that the regression forests can keep.

We try to set an appropriate (t, d), which makes the maximal total number of leaves larger

than the number of training samples. After executing several experiments by changing the

parameter set (t, d) with different numbers of training samples of Cube model from 10, 000

to 1, 000, 000 and by evaluating the reproducibility with the same Cube model, the two main

tendencies we found in parameter setting are; (1) the larger the number of t, the more stably

will the database be trained, and (2) an appropriate number of d should be set for preventing

overfitting depending on the number of training samples like d = 10 or d = 15.
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In conclusion, we set several (t, d) and evaluated the reproducibility of the databases.

Finally, we chose “RF(Cube) - 1” as the random forest of Cube model, and “RF(Cylinder) -

1” as the random forest of Cylinder model in Table 2.

Performance. We list the performance of BEM-based simulation and our prediction method

for several models in Table 3. The results shown in this table are based on previous exper-

iments including the prediction of the Cube’s fracture with Cube database which is cre-

ated randomly, the prediction of the Armadillo and Bar’s fractures with their respective

databases, and the prediction of the Armadillo fracture with the Cube and Cylinder databases

which are created randomly. In the “Fracture Scene” column, 0, 45 and 90 represent the di-

rection of initial force applied to Cube.

It can be shown in the “U-com” column that the time for computing displacements can

definitely be reduced compared with the BEM-based simulation. The total simulation time

does not decrease through our method for Cube. However, this result seems natural since

the Cube’s fracture is too simple and BEM-based simulation is quite fast.

In rows “Cube45”, “Cube90” and “Armadillo”, we found that the number of frames

in our proposed method is different compared with that in BEM-based simulation. This

is because the number of frames changes dramatically when we just adjust force parame-

ters slightly. Since different trained database causes different number of frames, it seems

hard to compare scenes with different number of frames. Therefore we design an index

of “u/frame”, which means the time for computing displacements per frame, to compare
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the time in different scenes. It can be seen in the “u/frame” column that the time for com-

puting displacements per frame can definitely be reduced compared with the BEM-based

simulation.

In Table 3, results also show that the simulation time of the Bar model is considerably

longer than that of the Armadillo model. This is because the force loaded on Bar model is

in shear direction, therefore the speed of cracking differs according to the crack directions.

Different cracking speed causes different number of triangles generated on fracture surfaces.

According to the columns of “Tri-fin” and “Tri-ini”, the Bar model has more triangles than

the other models. The simulation time of the Bar model is thus longer than the other models.

Since the time of COD prediction in our method increases linearly when the triangles of

fracture mesh increase, the prediction time of the Bar model is 10 times longer than that of

the Armadillo model when the number of triangles of the Bar model is 10 times more than

that of the Armadillo model.

It should be noted that our method can perform better as the number of triangles in BEM

mesh increases.

6 Conclusion and Future Work

In this paper, we propose a machine learning scheme that achieves fast approximation of

crack-opening displacement (COD) instead of solving linear equations in the propagation of

cracks. We designed a set of features including stress intensities and toughness at the current
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frame which have a strong influence on CODs at the next frame in our naive prediction, and

trained a regressor capable of predicting the projections of CODs of the next frame. Our

method reduces the time for computing CODs compared with BEM-based simulation. The

time cost can be reduced considerably especially when the resolution of initial BEM mesh

increases. Our approach shows a great potential for replacing the traditional BEM solver,

especially when the time cost is more important than the accuracy of fracture simulations,

like in computer games.

Since the results on computational performance show that the reduction of simulation

time by our method is quite limited, our method still cannot be put to practical application for

computer games, etc. However, since the time for computing CODs has been dramatically

reduced and the acquisition of displacements accelerated in linear time over the number of

crack-fronts at each time step compared with the conventional solution whose time com-

plexity grows exponentially based on the BEM linear system. For practical applications,

there is a need to not only reduce the time for computing CODs, but also the time of the

mesh generation process, which is included in the simulation of fractures. Also, our method

is the first method applying machine learning approach to BEM-based fracture simulation,

which should serve as useful reference for other researches.

In our future work, we will thoroughly analyze the different regression forest trees of

Cube and Cylinder databases to determine the Cube database can perform better than the

other databases when predicting the fractured surfaces of Armadillo models. Furthermore,

we will also try to extend our method to recompute the BEM linear system at the midtime,
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to solve repeated cracking and improve prediction accuracy. In addition, there are improve-

ments that can be made such as acceleration of the mesh update process.

Another interesting direction is to try to use different machine learning approaches such

as Convolutional Neural Network (CNN) for our regression. Finally, we will attempt to

combine fracture animations with the rigid body dynamics engine.
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Figure 1: Displacement correlation technique. ∆u is evaluated on correlation node of crack-

front.

Statistics coefficient KI Training Samples KII Training Samples KIII Training Samples

Median 14, 521, 100 −1, 400, 000 81, 253.2

Average 16, 614, 840.62 −2, 373, 040.041 65, 368.94

Dispersion 1.9919E+14 2.6533E+13 3.2648E+12

Standard deviation 14, 113, 317.33 5, 150, 967.276 1, 806, 866.553

Coefficient of variation 0.8494 −2.1706 27.6411

Table 1: Statistics about coefficients of stress intensities KI, KII, KIII obtained by BEM-

based simulation before training stage. (Training Samples) The raw training samples data

collected by BEM-based simulation with Cube model. (Coefficient of variation) Standard

deviation divided by average.
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Figure 2: Left: Flowchart of BEM-based fracture simulation system. Right: Flowchart of

our prediction system.
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(a) (b) (c)

Figure 5: Initial forces applied on Cube model are shown in the first row. The second row

refers to BEM-based simulation results, and the top bottom row is our data-driven results.

From left to right are 0,45, and 90 degree test cases respectively.
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Figure 6: Comparison of stress intensities obtained by BEM-based simulation and our pre-

diction method by using logarithmic graphs. (a) Test case for 0 degree. (b) Test case for 45

degrees.
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(a) (b) (c)

Figure 7: Initial forces applied on Cylinder model are shown in the first row. The second row

refers to BEM-based simulation results, and the top bottom row is our data-driven results.

From left to right are 0, 45 and 80 degree test cases respectively.
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Figure 8: Comparisons between BEM-based simulation and our prediction method. (a)

illustration of initial forces applied to the Bar model. (b) fracture surfaces of the Bar model

with BEM-based simulation. (c) fracture surfaces of the Bar model with our prediction

method.
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mode I mode II mode III

Figure 9: Comparison results between BEM-based simulation and our prediction method

under three loading modes. The first row represents the definition of three loading modes

(arrows) with expected crack propagation behavior (shaded), the second row represents

BEM-based simulation results with initial loading modes, and the third row represents their

corresponding prediction results.

43



(a) (b) (c)

(d) (e)

Figure 10: (a) illustration of initial forces applied to models. (b) fracture surfaces of Ar-

madillo models with BEM-based simulation. (c) fracture surfaces of Armadillo model with

Armadillo database based prediction. (d) fracture surfaces of Armadillo model with Cube

database based prediction. (e) fracture surfaces of Armadillo model with Cylinder database

based prediction. All experiments are performed with the same initial force.
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1st frame 6th frame 11th frame

Figure 11: BEM-based simulation results on Cube model with 0 degree force direction are

shown in the first row. The second row shows our data-driven results. From left to right are

1st, 6th, and 11th frames’ results respectively.
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1st frame 3rd frame 5th frame

Figure 12: BEM-based simulation results on Armadillo model are shown in the first row.

The second row shows our data-driven results. From left to right are 1st, 3th, and 5th frames’

results respectively.
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(a) (b)

(c) (d)

Figure 13: (a) BEM-based simulation result for Cube. (b)-(d) Prediction results with three

features, four features, and five features respectively. All experiments are performed with

the same initial force.
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Type of Database Num-sim Num-node (t,d) Data generation time Training time

RF(Cube) - 1 (used) 7502 992976 (50, 10) 11h25min16s 43min59s

RF(Cube) - 2 7502 992976 (25, 15) 11h25min16s 13h22min04s

RF(Cube) - 3 3001 411806 (50, 10) 4h23min40s 45min47s

RF(Cube) - 4 3001 411806 (25, 15) 4h23min40s 1h35min46s

RF(Cylinder) - 1 (used) 3001 492373 (50, 10) 3h30min06s 1h20min13s

RF(Cylinder) - 2 3001 492373 (25, 15) 3h30min06s 2h44min21s

RF(Armadillo) 151 12611 (10, 10) 1h37min49s 2min55s

RF(Bar) 151 71323 (50, 10) 2h13min39s 43min12s

Table 2: Time of databases generation. From left to right: (Num-sim) Number of times

simulation executions was executed. (Num-node) Number of nodes (training samples) gen-

erated by simulations. (t, d): Parameters of regression forest training. t denotes the number

of decision trees and d denotes the maximal depth of each tree. (Data generation time) Sim-

ulated time during generation of training samples. (Training time)Time for training decision

trees by regression forest method.
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Fracture Scene Tri-ini Tri-fin Method Total time U-com Sim-frac Other-t frame u/frame

Cube0 120 389 BEM 5.00s 0.09s 2.55s 2.36s 13 0.007s

120 391 RF (random) 5.79s 0.029s 1.50s 4.26s 13 0.0022s

Cube45 120 396 BEM 5.28s 0.15s 2.69s 2.44s 13 0.011s

120 397 RF (random) 6.74s 0.038s 1.72s 4.98s 14 0.0027s

Cube90 120 470 BEM 7.14s 0.33s 3.51s 3.5s 16 0.02s

120 640 RF (random) 6.84s 0.040s 1.98s 4.82s 14 0.0029s

Armadillo 1000 1252 BEM 47.84s 4.89s 9.35s 33.6s 16 0.31s

1000 1169 RF (Armadillo) 32.21s 0.21s 3.82s 28.18s 11 0.019s

1000 1168 RF (Cube) 28.80s 0.48s 4.98s 23.34s 12 0.040s

1000 1132 RF (Cylinder) 22.16s 0.19s 2.40s 19.57s 6 0.032s

Bar 416 1687 BEM 60.32s 7.49s 20.8s 32.03s 21 0.35s

416 1825 RF (Bar) 48.02s 2.64s 11.9s 33.48s 21 0.117s

Table 3: Performance of our prediction method vs. BEM-based simulation. From left

to right: (Tri-ini) The number of triangles in initial BEM mesh. (Tri-fin) The number of

triangles in final BEM mesh. (Method) Method of fracture including BEM-based simulation

and regression forest-based prediction method (RF). (Total time) The total simulated time

during the whole fracture process. (U-com) The time for computing CODs. (Sim-frac) The

total time for simulating fractures. (Other-t) The total time for other processes like reading

a model, writing to disk, loading regressors with our method etc. (frame) The number of

frames for simulation. (u/frame) The time for computing displacement per frame.
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