
Data-Driven Detailed Hair Animation
for Game Characters

Chenlei Wu
University of Tokyo

Takashi Kanai
University of Tokyo

Abstract
We propose a data-driven method to realize
high quality detailed hair animations in inter-
active applications like games. By devising
an error metric method to evaluate hair ani-
mation similarities, we take hair features into
consideration as much as possible. We also
propose a novel database construction algo-
rithmbased onSecondaryMotionGraph (SMG).
Our algorithm can improve the efficiency of
such graphs to reduce redundant data, and also
achieve visually-smooth connection of two an-
imation clips while taking into consideration
their future motions. The costs for the run-
time process using our SMG are relatively
low, allowing real-time interactive operations.

Keywords: Data-driven, Interactive applica-
tions, Hair animation, Game characters, Sec-
ondary Motion Graph.

1. Introduction

Decades ago, in interactive applications like
video games, the hair of characters was usu-
ally represented as three-dimensional surfaces
(e.g. NURBS) with alpha mapping, which looks
very unnatural. Friction, collision, and electro-
static forces occurring among hair strands are
very complex, and the features of hair strands
like coarse surface or small and irregular radius
[1] made realistic hair simulation a very hard
task. Moreover, the limited resources in games
made it almost impossible to represent realistic
hair animations at that time.
Many methods are proposed to solve this

problem, like cylinders or strip structures [2].

Figure 1: Our method can achieve detailed hair
animation of game characters at over
100 fps. The quality of animation is
very high and realistic.

These methods can accelerate calculation time
for strand-hair simulation and achieve better re-
sults. However, the resultant motions are still too
coarse and not satisfactory. To achieve visually-
satisfying effects, methods that simulate each
strand independently [3, 4] are the main trend
at the moment. These methods are extremely
high-cost and thus time-consuming for real-time
interactive applications.
In this paper, we propose a data-drivenmethod

to approximate detailed hair animation in inter-
active applications such as games (in Figure 1).
Taking into consideration only the specific fea-
tures of the game characters, only limited mo-
tions (walk, turn left/right, jump, etc.) need to
be operated, we can say that actually-appearing
animations are somehow predictable. Using
data-driven and subspace techniques [5, 6, 7], a
database containing hair animation clips is con-
structed in advance to accelerate run-time pro-
cess using such a pre-computed database with
very low cost.
Some specific problems of this kind of ap-

proach include the size of database tends to be

huge if details are sought, and influence of con-
tinuous motions like inertia forces cannot be ig-
nored to avoid visual sense of incompatibility. To
address these issues, we propose a novel database
construction algorithm based on Secondary Mo-
tion Graph. Our algorithm can improve the effi-
ciency of such graphs to reduce redundant data,
and also achieve visually-smooth connection of
two animation clips while considering their fu-
ture motions.

2. Related Work

Presently, although the quality of video game
graphics is very high, a variety of methods are
proposed to address the high-cost problemof hair
simulation. The most commonmethod is to set a
few strands as guide hair and apply interpolation
for the rest as shown in [8]. Chai et al. proposed a
reduced hair model method [9]to accelerate run-
time simulation by selecting effective guide hairs
and interpolationweights from training data. But
still, the resulting speed varies in the number of
guide hairs and the simulation method. Also,
the run-time cost for the simulation is still too
high for applications like games. Our method
differs from Chai et al.’s method that we mainly
focus on reducing the calculation cost and have
no reliance on simulator in the run-time process.
Other methods like parallel computing on

GPU proposed by Han et al. [10] accelerate sim-
ulation time. However, both parallel computing
methods and interpolation methods cannot deal
with hair-hair collisions very well, which plays a
very important role in the appearance of anima-
tion hair.
Data-driven and subspace method are used

in many places to address the run-time calcu-
lation cost problem (e.g. fluids [11], deforma-
tions [12]). The main concept of data-driven
method is to build up a database to support real-
time calculation. James and Fatahalian [5] pro-
posed a method to deal with predictable mo-
tions for interactive applications. The Impulse-
Response Function (IRF) and Impulse Palettes
can represent a specific motion sequence, and
by combining several motions and recalling the
pre-computed data of the selectedmotion, realis-
tic and complicated deformation can be realized
interactively. However, this method focuses on

motions for single instant impulses, and cannot
realize complex motions. The switch from one
impulse to another also lacks accuracy and can-
not demonstrate inertia left by previous actions
very well.
Guan et al. [6] proposed a method to take hair

parameters (length, softness, etc.) into consid-
eration by using multi-linear algebra to factorize
hair appearance from the learnt database. This
method can realize hair animation in real-time
while adjusting hair parameters. However, like
James et al’s method, Guan et al’s method does
not attach importance to the inertia force between
motions.
Kim et al. [7] combined IRF with a Motion

Graph (explained in Section 3.1) as an extension
to James’ method to deal with real-time cloth an-
imation for complicated motion sequences. The
cloth’s motions along the body are stored in a
Secondary Motion Graph (SMG), in which each
node corresponds to a body’s animation clip. By
expanding the graph from the position where the
maximum cloth state’s connection error occurs,
the inertia effect left by previous motions can be
preserved to some extent. This method can real-
ize more complex motions than James’s method
in [5], and realizes satisfactory cloth animation
in interactive applications.
Kim et al.’s method is promising, but as very

large databases are considered, the quality of the
constructed database becomes important. Stan-
ton et al. applies Kim et al.’s method to fluid
in [13]. By detecting the most common actions
player tends to take, Stanton et al’s method fo-
cuses on how to improve the efficiency of the
constructed SMG containing important data.
Considering that hair is also an accessory on a

character’s body, which moves along the body’s
motion, Kim et al.’s method provides new ideas
for how to dealwith hair animations in interactive
applications. However, the special features of
hair make it difficult to directly applying this
method. We thus tried to find a way to promote
the quality of the database (based on SMG).

3. Motion Graph and Secondary
Motion Graph

In this section, we describe the Motion Graph
as our input and the Secondary Motion Graph

Idle

Walk

Left

Right

Jump

Figure 2: MotionGraph containing fivemotions:
Idle, walk, turn-left, turn-right, jump.

0

1 2 34

56 78

91011 12

1314 1516

17

18 192021

29 30

2728 2324 2526

22

3536 34

33 3231

Figure 3: Generated Secondary Motion Graph
with threshold λ = 5.5.

as our output. We also briefly describe Impulse
Response Function used in our method.

3.1. Motion Graph

In our method, a primaryMotion Graph (MG)
is used as input. It can be constructed by a
method like [14], and its motions are manually
adjusted by software tools such as Blender or
Maya. The character’s body motion sequences
are contained in this graph (Figure 2). Each
node represents a specific motion (walk, jump,
etc.) constructed by many frames of body poses.
Transition restrictions are added as graph’s edge.
The information we need here from MG is the
movement of the head along body.

3.2. Secondary Motion Graph

A Secondary Motion Graph (SMG) is a graph
storing data on hair motions corresponding to
motion graph nodes. The next motion a user

wants to take is in general unknown and unpre-
dictable. Although the inertia or collision forces
on body’s motion need not be considered, the
animations of hair will become very unnatural if
they are dealt with in the same way as the body,
because of the lack of these force’s effect.
To represent other parts attached to the body

naturally, we need to construct a SMG (see Fig-
ure 3) to store the corresponding hair motions of
these parts. A SMG node contains,

1. Corresponding MG node ID (MGID),
2. Motion sequence data (IRF) with the same

number of frames as its motion graph node,
3. Parent node’s ID (which is the previous mo-

tion it corresponded to, i.e. the switch it
comes from),

4. Children nodes’ ID.

The constructed SMG contains more nodes than
the original motion graph. That means, a motion
of bodymight correspond to several different hair
motion nodes, depending on the motion taken
previously. Especially in games, a relax state
(e.g. the idle motion) is considered as the default
state when no command is given. This relax
motion might be related to more SMG nodes
than other motions.
A switch is a directional link between two

SMG nodes. Two motion sequences are con-
nected from the start to end SMG nodes of a
switch. Note that a switch and the one with
its reverse direction may have totally different
motion sequences. There are also self-looping
switches from a node to an identical node.

3.3. Representation of Motion Sequences

The motion sequence data in each SMG node
is stored in a structure analogous to IRF (Im-
pulse Response Function) database [5]. A ma-
trix is constructed containing the whole motion
sequence data. The row of a matrix is frames,
and the column is vertex coordinates of strands,
which are pre-localized. For such a matrix, sin-
gular value decomposition is applied for the com-
pression. A compressed motion sequence is then
represented as a set of basis vectors whose di-
mensions are far less than the number of frames.

4. Construction of Secondary
Motion Graph for Hair

To obtain smooth and natural hair animation
results when commands are given by the user,
we have to construct a Secondary Motion Graph
(SMG) along the primarymotion graph. In addi-
tion, to represent the detail inertia forces passed
from the previous motions, we need to expand
the SMG to a satisfied level to contain the re-
quired details. For example, if a character starts
from the Idle-state, do a walk-motion and come
back to Idle-state again, the hair’s motion for the
later Idle-state will be different from the start one
due to inertia force. There will also be two SMG
nodes stored in the graph related to the sameMG
node (Idle).
What we need to pay attention to is how to

select and save important motion clips needed,
to make the graph more sufficient (i.e. contain
more important data as well as be smaller in size
at the same time).

4.1. Hair’s Shape Historgram

To select sufficient motion data, we have to
find motions that are close to each other. A de-
tailed hair model contains thousands of strands
moving separately. One strenuous motion can
cause different strands alternating with each
other, which makes the distance among strand
vertices very large from other states, yet the
shape of hair seems to be similar (as shown in
Figure 5).
The error metric method Kim et al. used in

[7] is simply L0 or L1 Euclidean distance among
vertices. For hair, this method cannot identify
similar states or motions correctly. Given that
there are far more strand vertices than cloth, and
that a small amount of deviated hair should not
affect the entire look too much, a good way to
evaluate the similarities of two hair motions is
needed.
Here, we introduce the shape histogram (sim-

ilar with [15]) as demonstrated in Figure 4a to
evaluate the similarities between hair states. First
of all, the hair states are all localized to the center
by multiplying the head motion’s inverse (which
is known from theMG)when IRF is constructed.
The space around the localized hair model is di-
vided intomany grids, and the number of vertices

in each grid is calculated as the histogram’s value
in each bin. The non-zero bins in the histograms
for both two hair states are used as valid bins to
calculate the error (as shown in Figure 4c).
The average of the absolute difference between

the histogram of two bins is used as an error be-
tween two current hair states. To evaluate whole
sequences, we also use the average value of the
error of every frame as the merge error ε (a, b)
for two nodes a, b of SMG,

ε (a, b) =
1
N

N∑
j=1

*
,

1
n j

n j∑
i=1

���H
j
a (i) − H j

b
(i)���

+
-
, (1)

where N is the number of frames, n j is the num-
ber of valid bins for frame j, and H j

a (i) is a
histgram value of node a, i-th bin, and frame j.
Note that for a pair of nodes in SMG, N is a
constant value, but n j might change per frame.
The calculated merge-errors are used to de-

cide whether the current two motions are similar
enough tomerge, or fromwhich node the next ex-
pansion is to be applied, which will be described
in a later subsection.

4.2. Constructing SMG for Hair

Unlike Kim et al’s method [7] which only con-
siders instant state error when a switch occurs
from one motion to another, we want to take
the whole sequence of future motions into con-
sideration. To consider such a future motion
sequence, we propose here a novel construction
algorithm so that more smooth connection be-
tween two motion sequences can be established.
The procedure to construct a SMGconsists of the
following steps: 1. Initialization, 2. Expansion,
3. Merge (and expansion), and 4. Addition of
response sequence nodes. We will describe our
algorithm step by step. In Appendix A, we also
show the pseudo code of our complete algorithm.
To help understand our algorithm, we will use

a MG in Figure 2 as an example. There are five
nodes (Idle, Walk, Left, Right and Jump) and 18
switches including self-looping (orange allows,
e.g. Idle to Idle) in this graph.

Initialization. First, a start node (e.g. Idle) is
selected, and all switches in MG are traversed
in a breath-first manner to construct an initial
tree of SMG as shown in Figure 6a. In this tree,

(a)

value

bin

(b)
Error ≈ 16.501 Error ≈ 9.385 Error ≈ 6.701

(c)

Figure 4: (4a) Bounding box is applied to hair model, number of vertices fallen into each grid is
counted as the bin value in the shape histogram. (4b) The valid bin in two shape histograms
is the error between these two hair states. (4c) Larger deformations hold larger error values.

(a)

(b)

Figure 5: In 5a, two hair poses are very similar,
but actually, the distance between ver-
tex pairs (as shown in white in 5b) is
very large. This is because collision
and friction occurring in hair strands
made them deviate to each other yet
the whole shape is the same.

nodes of the same color have the same MG node
id (MGID).

There are two kinds of nodes contained in this
tree. One is the formal SMG nodes and the
other is the so called ghost nodes. The formal
SMG nodes are nodes that are actually used dur-
ing real-time process. In contrast, ghost nodes
are potential nodes for SMG. They are stored
to determine whether the SMG’s accuracy is
enough, and will be added as formal SMG nodes
if needed. Introducing ghost nodes is the key to
our algorithm, since they are considered candi-

0

1 2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18

(a)
SMG Nodes 0 2 3 4 5

1 6 7 8 9 10
Ghost Nodes 10 11 12 13 14 15

16 17 18

(b)

Figure 6: (a) Initialized SMG. (b) SMG nodes
list (dark color) and ghost nodes list
(gray color).

dates for the futuremotionswhich can be actually
taken.
In the initial tree construction, we set the sim-

ulation results for MG nodes which are traversed
for the first time to be SMG nodes, and results
from MG nodes already been calculated to be
ghost nodes.

Expansion. Next, we apply the expansion of
the graph from ghost nodes so that errors be-
tween two motion sequences decrease. For each
ghost node g, the errors to the nodes satisfying
the following three criteria are calculated using
Equation (1):
1. Nodes that come from the same switch, and

holds the same MGID.
2. Ancestor nodes with the same MGID.
3. Nodes with the same MGID if no node is

satisfied with conditions 1. and 2.

We then select the minimum error εmin (here-
after called to-merge error) among errors calcu-
lated above, and the corresponding node h (here-
after called to-merge node) which is the most

0

1 2

3 4 5

6 7

(a)

0

1 2

3 4 5

6 7

8 9

(b)

Figure 7: (a) Graph before expansion. If node
No.6 holds the largest error, expansion
occurs at No.6 as in (b).

0

1 23
4

3

1

4

2

Figure 8: Merge applies to turn the father node’s
child pointer to the to-merge non-ghost
node. If node 3’s to-merge node is 1,
then the child node of node No.1 (edge
1) will change to 1 (edge 3), and No.3
wil be deleted from SMG.

similar motion. As an example in Figure 7, for a
ghost node No.6, No.4 (from condition 1.) and
No.0 (from condition 2.) are selected as candi-
dates, and No.4 is finally selected as a to-merge
error node.
We now process the expansion step as follows:

We first prepare a heap E and for each ghost node
a triplet (g, h, εmin) is stored. We next take out
a ghost node from E with the maximum key
using delete-max operation and set it to a formal
SMG node. We then traverse switches from a
new SMG node, create ghost nodes, calculate to-
merge errors, and store them to E. This process
is repeated until the maximum key is less than
a threshold λ. Figure 7 shows how expansion
process works.

Merge (+Expansion). When the expansion
process is completed, the to-merge error of all

keys in a heap should be less than a threshold λ.
Next, we merge each pair of two nodes g and h
of error εmin to decrease the size of SMG. Two
nodes to be merged have similar motions.
To execute the merge operation, we continue

to use a heap E created in the expansion process.
For each ghost node g of a heap, the merge is
applied if a to-merge node h is the formal SMG
node. That is, g is discarded and its parent node
point is switched to h. If h is a ghost node, merge
operation cannot be applied since two nodes are
both ghost nodes. In this case, we first set h
to the formal SMG node, and apply expansion
operation to a new SMG node. Then, we apply
merge operation to g described above.
When this process is completed, the remaining

ghost nodes are all discarded. Figure 8 shows a
SMG after a merge operation has finished.

Adding Response Sequence Node. In the Ex-
pansion step, threshold is used. Such a threshold
given by user will directly decide the size of the
graph. A larger value will cause more detailed
motions to be lost, while a smaller value will
lead to a huge graph. To reduce the graph to a
reasonable size and obtain smooth results at the
same time, we consider introducing the idea of
IRF [5], and preserving the most easy-to-notice
details. As an example, a MG node “Idle” is
the most common state for the character, the mo-
tion holds the largest number of SMG nodes, and
extra details are added to expand these motions.
As shown in Figure 9, we add a longer and

cycled motion sequence of “Idle” as a response
sequence node (RS node) to the graph. RS nodes
differ from SMG nodes as follows: 1. length of
node, 2. relationship with other nodes, 3. how
they are displayed.
Here, SMG nodes of “Idle” that 1. points to a

self-loop node, 2. points to a node of “Idle”, 3.
is a self-loop node, are considered for merging.
We then merge each of those nodes to an ap-
propriate position in the corresponded RS node.
This position is where the most similar motion
sequence ends, so the node can turn to response
sequences with less incompatibility.
To determine an appropriate position in the

correspondedRS node, we prepare amatrix form
of errors (error matrix) as shown in Figure 10. In
this figure, the row indicates frames of RS node,

0

1 2 3 4

56 78

91011 12

1314 1516

17

18

1920

21

Figure 9: Response nodes shown in the bottomof
the graph represents different response
motions caused by inertia forces left
from previous motions. Although the
hair motions contained in response
nodes are different, they all relate to
the same body motion (Idle state).

and the column shows frames of a SMG node to
be merged. Dissimilarity between every frame
in RS node and SMG node is then stored as a
grayscale color in each element of amatrixwhere
a lighter color holds a larger shape histogram
error as described in Equation (1).
In the error matrix, a motion sequence to be

selected is represented as a right downward line
(a red line in Figure 10). Among such lines, we
select one with the smallest variance of shape
histogram errors on the line. This ensures that
two motions move in a similar strand, and also
are usually with small errors. One advantage
of the above method is threshold-independent,
that is, an adequate position in the RS node is
determined without using the threshold value.

5. Run-time Process

After the construction of SMG, we use it as a
database to support runtime process. As SMG is
based on motion graph, only motions contained
in graph can be displayed. We compute vertex
coordinates of hair in the current SMG node and
its current frame by the linear combination of
the basis vectors and weights, as the head posi-
tion changes. The hair motion data contained in
IRF does not include displacement information,
and only contains deformation data for hair in

Figure 10: Dissimilarities between every frame
in RS node and SMG node are stored.
Lighter part holds larger errors, and
darker part holds smaller error. The
width of the Figure is the RS node
length, and the height is the SMG
node to be paired. The red line in
the Figure is the sequence where the
smallest variance exists.

Input
Secondary

Motion Graph

Traverse SMG
according to
user control
to specific

node

Draw hair
state of

current frame

Merge the
current state

with start
state of

upcoming
node

Figure 11: Flow chart for run-time process.

local coordinates. As hair moves together with
the scalp (or head), we only need to transfer the
hair model together with head joint displacement
information.
We now set a constraint to a motion graph

about the change from the current node to the
next node: Although an action command is given
from user during moving, the character contin-
ues moving until it reaches the switchable point
(end of current node). Then, a motion under ex-
ecution changes, and the character moves from
the current node to the next node (see runtime
process in Figure 11).
At the same time, the hair node in SMG will

switch to the child node according to the ID of
the next motion. As the transition constraints
are added to the motion graph, no illegal switch
occurs, and the corresponding node will also not
be in the child node list.
The switch in MG can always find the corre-

sponding SMG node since a SMG is an infinite
loop graph. However, if the response sequence
node exists, when a motion switches to the idle
state and keeps looping (as a SMG node switches
to response sequence nodes), the node is selected
and the animation will start from the start frame

which the previous SMG node is pointing. The
error between the response node and node of the
next motion can be ignored, because the child
node of the response node before merging SMG
has already been merged to the idle node.

5.1. Connection Penalty

As we use ghost nodes instead of an instant
state error, the distortion which occurred while
switching from one node to another is larger than
Kim et al.’s method [7]. However, by blending
two nodes, we can achieve transfer fromone node
to another without unobvious errors within sev-
eral frames, even if their start and end states are
quite different.
We simply apply linear blending to connect

two nodes. As the motion graph node continues
to its end, the error must happen between the end
of the first node and the beginning of the next
node. We save the end state of the previous node
as penalty occurring with the switch as distances
between vertex positions of such two nodes, and
add this penalty back to the start sequence of
the next frame (for a certain blending length),
as shown in Figure 12. Note that the blending
length must be smaller than the node length, so
the penalty will not be passed to the next motion.

Previous node Next node

Blend Length

Figure 12: Blend occurs between two nodes, the
green part is the penalty added to
the next node, within several frames
(blend length).

6. Results and Discussion

In our experiment, five motion-captured mo-
tions containing Idle, Walk, Left, Right, and
Jump from CMU motion capture database [16]
with 18 switches are used for the primary mo-
tion graph. We use a hair model containing 4134
guide hairs and 41340 verticeswithMaya’s nHair
system as black box simulator to calculate hair
motions. Hair-hair collisions and hair-head col-
lisions are calculated, but hair-body collisions
are not implemented.

For a reasonable threshold 5.5, 10662 frames
of valid motion sequences (about 5.1 GB) are
simulated. From such raw data, 2220 frames
of motion sequences (about 460MB after SVD)
are contained in the final SMG. Table 1 shows
the statistical results for constructing SMG set
with several threshold values. As the threshold
increases, the graph size becomes smaller (1576
frames for threshold 6.5 and 1251 frames for
threshold 8.0), but we can still obtain visually-
satisfying results by adding RS nodes. Com-
pared to Kim et al.’s method, the size of our
graph increases more efficiently while threshold
decreases, and more natural-looking results with
the same graph size can be obtained, because
the effect caused by inertia forces (or future er-
ror) are taken into consideration (see the attached
video). Less redundant data are contained in the
graph with our method.
In the run-time process, we use AMD’s

TressFX hair system as renderer. Over 100 fps
(with CPU Intel Core i7-4770 andGPUNVIDIA
GeForce GTX TITAN) can be reached while
CPU usage is under 20% and memory usage is
about 512MB, without any GPU acceleration or
parallel computing.

Limitation. As a limitation, the data compres-
sion ratio is not satisfied, since the col/row rate of
the matrix for SVD is large. To achieve detailed
hair animations, we have to use large amount
of hair vertices. Although in the runtime pro-
cess, the rendering time is saved, the memory
cost is unavoidable. For interactive applications,
single-strand interpolation could be combined to
achieve low memory cost. It is possible to apply
Chai et al. [9]’s reduced hair method to obtain
the most representative guide hairs for each IRF
(as long as the number of guide hair strands for
each IRFs is the same), and recover detailed an-
imation by interpolation.

7. Conclusion

We proposed a novel data-driven approach to
realize detailed hair animation for real-time ap-
plications like games, with very little computa-
tion cost during the run-time process. The L0
or L1 error metric between vertex pairs is mean-
ingless for hair, because detailed hair animations

λ #Frames Sim. #Nodes Expanded #Frames SMG #Nodes SMG #Nodes [7]
5.5 10662 155 2220 37 -
6.5 6896 105 1576 26 -
8.0 5318 79 1363 22 37

10.0 4227 62 978 15 23

Table 1: Statistical results of our SMG construction algorithm. From left to right: Threshold value (λ),
Total number of simulated frames (#Frames Sim.), Number of nodes after expanded operation
(#Nodes Expanded), Total number of frames in SMG (#Frame SMG), Number of nodes in
SMG (#Nodes), Number of nodes in SMG by Kim et al.’s method with similar visual quality
(#Nodes [7]).

require large amounts of hair, and the error of
each strand can be very large even though the
total shape of hair is quite similar.
We propose a method using hair shape his-

togram to recognize important (meaningful) an-
imation data. By storing the most important
data, we can construct a secondary motion graph
with less redundancy. The threshold value varies
largely if the relationship between vertex pairs
are considered, however, by using our error met-
ric of shape histogram, we can obtain a compar-
atively stable threshold that varies slightly when
the number of strands or primary motion graph
changes.
As blending is applied when switching from

one node to another, connection error is not as
important for hair animation as cloth. By con-
sidering total sequence errors instead of instant
connection errors, we can achieve more natural
results when switching among motions because
inertia forces are taken into consideration.

Acknowledgements

We would like to thank Prof. Taku Komura
and Prof. Tomohiko Mukai for their precious
advices, and Hiromu Ozaki for helping with the
code debugging.

A. Our SMG Construction
Algorithm

Algorithm 1 shows the pseudo code of our
SMG construction algorithm.

References

[1] Clarence R Robbins. Chemical and Phys-
ical Behavior of Human Hair, volume 4.
Springer, 2002.

[2] Chuan Koon Koh and Zhiyong Huang.
Real-time animation of human hair mod-
eled in strips. In Proc. Eurographics Work-
shop on Computer Animation and Sim-
ulation, pages 101–110, Vienna, 2000.
Springer Vienna.

[3] Florence Bertails, Basile Audoly, Marie-
Paule Cani, Bernard Querleux, Frédéric
Leroy, and Jean-Luc Lévêque. Super-
helices for predicting the dynamics of nat-
ural hair. ACM Trans. Graph., 25(3):1180–
1187, July 2006.

[4] Andrew Selle, Michael Lentine, and
Ronald Fedkiw. A mass spring model
for hair simulation. ACM Trans. Graph.,
27(3):64:1–64:11, August 2008.

[5] Doug L. James and Kayvon Fatahalian.
Precomputing interactive dynamic de-
formable scenes. ACM Trans. Graph.,
22(3):879–887, July 2003.

[6] Peng Guan, Leonid Sigal, Valeria Reznit-
skaya, and Jessica K. Hodgins. Multi-
linear data-driven dynamic hair model
with efficient hair-body collision handling.
In Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages
295–304, Aire-la-Ville, Switzerland, 2012.
Eurographics Association.

[7] Doyub Kim, Woojong Koh, Rahul Narain,
Kayvon Fatahalian, Adrien Treuille, and

Algorithm 1 Construct SMG
Require: Motion GraphM, Hair Model

// 1. Initialization
Select a start node i
for all Node j ofM from i in a breath-first manner
do

if traversed at the first time then
Add j to a SMG S as a SMG node

else
Add j to S as a ghost node

end if
end for
// 2. Expansion
Heap E ← 0
for all Ghost node g in S do

Compute εmin and the corresponding node h
Store a triplet (g,h,εmin) to E

end for
while g = E.delmax() > λ do

Set g to a SMG node i
for all switch (i, j) in node i do

Compute εmin and h for j
Add node j to S as a ghost node
Store a triplet (j,h,εmin) to E
Set g to a SMG node i

end for
end while
// 3. Merge
while g = E.delmax() is not nil do

if h is a SMG node then
Change a switch from a parent of g to h
Discard g

else if h is a ghost node then
Set h to a SMG node i
for all switch (i, j) in node i do

Compute εmin and h for j
Add node j to S as a ghost node
Store a triplet (j,h,εmin) to E

end for
Discard g

end if
end while
// 4. Add Response Sequence Node
Add response sequence node i
for all Node j of the same MGID in i in S do

Compute a position in i
end for

James F. O’Brien. Near-exhaustive pre-
computation of secondary cloth effects.
ACM Trans. Graph., 32(4):87:1–87:8, July
2013.

[8] Hubert Nguyen and William Donnelly.
Hair animation and rendering in the nalu
demo. GPU Gems, 2:361–380, 2005.

[9] Menglei Chai, Changxi Zheng, and Kun
Zhou. A reduced model for interactive
hairs. ACM Trans. Graph., 33(4):124:1–
124:11, July 2014.

[10] Dongsoo Han and Takahiro Harada. Real-
time hair simulation with efficient hair style
preservation. In Workshop on Virtual Re-
ality Interaction and Physical Simulation,
pages 45–51. The Eurographics Associa-
tion, 2012.

[11] TheodoreKimand JohnDelaney. Subspace
fluid re-simulation. ACM Trans. Graph.,
32(4):62:1–62:9, July 2013.

[12] Fabian Hahn, Bernhard Thomaszewski,
Stelian Coros, Robert W. Sumner, For-
rester Cole, Mark Meyer, Tony DeRose,
andMarkus Gross. Subspace clothing sim-
ulation using adaptive bases. ACM Trans.
Graph., 33(4):105:1–105:9, July 2014.

[13] Matt Stanton, Ben Humberston, Brandon
Kase, James F. O’Brien, Kayvon Fata-
halian, and Adrien Treuille. Self-refining
games using player analytics. ACM Trans.
Graph., 33(4):73:1–73:9, July 2014.

[14] Lucas Kovar, Michael Gleicher, and
Frédéric Pighin. Motion graphs. ACM
Trans. Graph., 21(3):473–482, July 2002.

[15] Mihael Ankerst, Gabi Kastenmüller, Hans-
Peter Kriegel, and Thomas Seidl. 3d shape
histograms for similarity search and clas-
sification in spatial databases. In Proceed-
ings of the 6th International Symposium on
Advances in Spatial Databases, SSD ’99,
pages 207–226, London, UK, UK, 1999.
Springer-Verlag.

[16] CMU graphics lab. motion capture
database. http://mocap.cs.cmu.edu/.

