DenseGATs: A Graph-Attention-Based Network for Nonlinear
Character Deformation

Tianxing Li
The University of Tokyo
Tokyo, Japan
litianxing@g.ecc.u-tokyo.ac.jp

Rui Shi
The University of Tokyo
Tokyo, Japan
shirui@graco.c.u-tokyo.ac.jp

Takashi Kanai
The University of Tokyo
Tokyo, Japan
kanait@acm.org

Training Data: deformed characters in random poses

RES

Training
Output (Nonlinear '
. DenseGATs Nodal D—
Extracting Displacement
Graphs

Figure 1: For multiple animated characters with different garments, our method uses a graph-attention-based network
“DenseGATs” for correcting nodal linear deformations to nonlinear ones. By learning skinning features in the train set, our
method yields more accurate deformations for new character meshes, thereby significantly reducing the time and efforts

taken for performing the skinning process.

ABSTRACT

In animation production, animators always spend significant time
and efforts to develop quality deformation systems for characters
with complex appearances and details. In order to decrease the
time spent repetitively skinning and fine-tuning work, we propose
an end-to-end approach to automatically compute deformations
for new characters based on existing graph information of high-
quality skinned character meshes. We adopt the idea of regarding
mesh deformations as a combination of linear and nonlinear parts
and propose a novel architecture for approximating complex non-
linear deformations. Linear deformations on the other hand are
simple and therefore can be directly computed, although not pre-
cisely. To enable our network handle complicated graph data and
inductively predict nonlinear deformations, we design the graph-
attention-based (GAT) block to consist of an aggregation stream
and a self-reinforced stream in order to aggregate the features of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

I3D °20, May 5-7, 2020, San Francisco, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7589-4/20/05....$15.00
https://doi.org/10.1145/3384382.3384525

the neighboring nodes and strengthen the features of a single graph
node. To reduce the difficulty of learning huge amount of mesh
features, we introduce a dense connection pattern between a set
of GAT blocks called “dense module” to ensure the propagation of
features in our deep frameworks. These strategies allow the sharing
of deformation features of existing well-skinned character models
with new ones, which we call densely connected graph attention
network (DenseGATs). We tested our DenseGATs and compared
it with classical deformation methods and other graph-learning-
based strategies. Experiments confirm that our network can predict
highly plausible deformations for unseen characters.

CCS CONCEPTS

« Computing methodologies — Neural networks; Animation.

KEYWORDS

character rigs, mesh deformation, graph learning

ACM Reference Format:

Tianxing Li, Rui Shi, and Takashi Kanai. 2020. DenseGATs: A Graph-Attention-
Based Network for Nonlinear Character Deformation. In Symposium on
Interactive 3D Graphics and Games (I3D °20), May 5-7, 2020, San Francisco, CA,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3384382.
3384525

https://doi.org/10.1145/3384382.3384525
https://doi.org/10.1145/3384382.3384525
https://doi.org/10.1145/3384382.3384525

13D 20, May 5-7, 2020, San Francisco, CA, USA

1 INTRODUCTION

During the process of animating a character, rigging is a crucial task
which involves defining motion, control, and deformation systems.
The process of developing a deformation system is always labor in-
tensive and this has been receiving considerable attention in recent
years. Traditional skinning methods such as Linear Blend Skinning
(LBS) and Dual Quaternion Skinning (DQS) are widely adopted in
real-time applications due to their simplicity and efficiency. How-
ever, both methods produce unrealistic deformation artefacts. To
create more realistic skin deformations that make the appearance
look more detailed and complex, skinning processes including inter-
ative weight painting and additional modification are unavoidably
needed, which require animators to spend significant efforts and
time on the manipulation of character models. Few studies have
attempted to address this problem by automatically generating skin-
ning weight [6, 18]. However, the drawback of these approaches is
that they are not able to generate highly plausible nonlinear mesh
behavious which need further manual interventions. Lately, Bailey
et al. [3] used a simple feed-forward network to approximate com-
plex nonlinear deformations to achieve film-quality accuracy while
enabling real-time animation. However, once the networks were
trained, they could only work for one specific character model and
the application to new character models was limited.

Based on the above, two main challenges should be addressed.
The first is to explore an integrated deformation system, which
directly results in complicated deformations that have more con-
vincing effects. The second is make this deformation system gener-
alized that allows to apply available artist-designed skinning mesh
features to new character meshes to avoid time-consuming manual
painting and fine-tuning work.

In this paper, we present an approach to leverage a novel densely
connected graph attention network, named “DenseGATs” to achieve
the goal of automatically generating satisfactory deformations for
new characters. Following the deformation decomposition with
linear and nonlinear parts, our proposed graph-attention-based
network can be applied to clarify the intricate relations of the mesh
graph-displacement of the nonlinear part. The outline of the method
is shown in Fig. 1. When input with a linear-based deformation
graph which encodes the mesh and skeleton attributes of a vertex,
our network (detailed structure is shown in Fig. 2) end-to-end maps
it to a corrective displacement per mesh vertex for more complicated
nonlinear effects.

Specifically, our technical contributions are two-fold:

e To deal with arbitrarily structured mesh graph data, our
method leverages graph-attention-based (GAT) blocks for
effectively learning complicated mesh features. Specifically,
in each GAT block (details in Fig. 3), we extend the original
GAT structure by adding a self-reinforced stream that lin-
early maps the individual features of each node. This stream
is then concatenated with the graph-attention-based aggre-
gation stream to form a GAT block. In this way, the GAT
block can effectively compile information on complex graph
features from neighboring vertices as well as information on
self-features.

o To extract high-level features with deep layers and ensure
the propagation of information on large amount of features,

Tianxing Li, Rui Shi, and Takashi Kanai

we introduce “dense module” that adopts dense connectivity
patterns between several GAT blocks to resolve the vanish-
ing gradient problem and effectively improve information
flow by fusing multiple levels of features.

For training purposes, we built a dataset which involves a set
of differently dressed characters with high-quality rigs. Further-
more, we also animated these characters with possible poses. After
training, the trained network is then used to predict nonlinear de-
formation which is the vertex offset for new character samples in
the test set.

2 RELATED WORK

Skinning method. Common approaches for deforming the skin
of articulated characters can roughly be classified into geometry-
based, example-based, and physics-based methods. Geometry-based
methods deform the skin mesh by the weighted transformation of
bones applied to each vertex. The basic idea of well-known algo-
rithm linear blend skinning (LBS) [21] widely adopted in real-time
applications is to linearly blend transformation metrics. LBS is sim-
ple and highly efficient, but always suffers from artefacts such as
“candy-wrapper” and volume loss. Kavan et al. [11] proposed a skin-
ning method named dual quaternion skinning (DQS) by replacing
linear blending with nonlinear blending based on dual quaternions.
It eliminates the artefact effects of LBS but produces undesirable
joint-bulging artefacts.

Example-based methods permit more complex skinning effects
such as skin slide, muscle bulges, and wrinkling of clothing. They
treat deformations as a shape interpolation problem which takes,
as input, a series of scattered data poses to obtain the desired de-
formation. Pose space deformation (PSD) [14] uses a radial basis
function for scattered interpolation. Based on this, weighted pose
space deformation [12] was then proposed with limited number of
poses. More recently, Le et al.[13] presented a method for generat-
ing linear blend skinning models by using a set of example poses.
The obtained model includes skeletal structure, skinning weights,
joint positions, and corresponding bone transformations. Studies
in [5, 19] used the skinned vertex-based models to fix skinning
artefacts and enrich the nonlinear effects. However, their models
are unable to be applied to a new mesh with different number of
vertices from the training set.

Realistic character deformations can also be realized through
physics-based methods [8]. McAdams et al. [22] proposed a robust
method to simulate a deformed surface based on a hexahedral lattice.
Xu et al. [27] presented a method to add physically-based dynamics
to pose-space deformation and character rigging. Recently, Pan
et al. [24] improved the traditional position-based dynamics by
adding energy constraints to realize automatic skinning and weight
retargeting with new characters.

Neural-Network-based deformation. Past researches have
explored methods to use neural networks for computer animation.
To clarify the force-displacement relation of nonlinear materials,
Luo et al. [20] used a simple neural network to map linear elasticity
deformations to nonlinear ones. Similar to the idea of decompos-
ing a deformation with linear and nonlinear parts, Bailey et al.
[3] used feed forward neural networks to approximate nonlinear

DenseGATs: A Graph-Attention-Based Network for Nonlinear Character Deformation

13D 20, May 5-7, 2020, San Francisco, CA, USA

z
A EIEEEIR = k=[5 5 =5
Q& M w—"w** el © [w— W
= Zll & | g | e 3 ERI|I5|| & | &
o) (¢ o (] [e] o o [e] o
g % ~ ~ ~ ~ ~ ~ ~ ~
o

Dense Module 1

Dense Module 2

$oIg 1V
¢
O VD

22018 LVD
)IOOIH[LVD
)190[8: IVD
)I:’OIE; IVD
319018% IVD
&
)IOOIH VD
)[:)0[8. IVD
| Q[NPOJA] JBIUI[UON |
| s1u9m9£v,[ds1(] I

Dense Module 3

Figure 2: Structure of “DenseGATs”. The three boxes denote our proposed “dense modules”. Each dense module comprises six
densely connected GAT blocks. Fig. 3 shows the details of each GAT block.

deformations based on linear blend skinning. They feed the trans-
formation matrix and translation vector to the network and output
the corrected displacement at interactive rates. One problem of
this method is that the trained networks cannot be fitted to the
new characters because the networks are optimized for specific
character bones and meshes. Recently, Liu et al. [18] presented a
method to automatically predict skin weights especially for game
characters with complicated dressing. By using a graph convolu-
tion network, new characters with predicted skin weight maps can
yield satisfactory deformations, but the algorithm only computes
fixed weights and only assumes deformations are a function of the
skeleton.

Graph neural networks. Graph neural networks (GNNs) are
deep-learning-based methods capable of reasoning about 3D data.
Zhou et al. [28] categorized GNNs into several groups (convolution,
gate mechanism, skip connection and attention mechanism) based
on their propagation step. Existing works with convolution opera-
tions on graph can be divided into spectral approaches [4, 9, 10, 17]
and spatial approaches [1, 2, 7, 23]. The former methods define
the convolution operation in the Fourier domain by computing the
eigen decomposition of graph Laplacian, while the latter directly de-
fines convolution operations on spatially close neighboring nodes.
Focusing on attention mechanism, the graph attention network pro-
posed by [26] applies an attention mechanism to the propagation
step. It is able to specify different weights to different nodes while
aggregating different sized neighboring nodes, and does not depend
on knowing the graph structure upfront. Moreover, the established
models can be successfully applied to inductive learning.

3 DENSEGATS

Deformation rigging is a quite difficult process, due to the need
to bind the skeleton to the character mesh with the skinning algo-
rithms and other refinements to determine how the skin meshes
move. Our method provides a novel, direct way to compute de-
formation that expresses the deformation of the mesh as the sum

of two functions: a linear-based deformation function ¢(S) which
linearly maps the skeleton transformation S to the mesh vertex
position, as well as a graph-attention-based nonlinear deformation
function h(G) which further refines linear deformation #(S) based
on its mesh graph features G.

t(S) is computed with LBS which is simple and direct, and char-
acters are deformed by transforming vertices through a weighted
combination of bone transformations. For more attractive effects,
our method provides an additional step that uses a graph-attention-
based network to generate nonlinear corrected displacements of
nodes based on linear deformation. We treat the nonlinear function
h(G) as a black box which allows for more general deformations
based on mesh features and we approximate it with our expressive
DenseGATs network. This section describes our proposed method
on how to compute h(G) in detail. We start with a description
of how to construct our input graph. We then present our frame-
work including GAT block, dense module and the overall network
successively. Implementation detail will also be explained at last.

3.1 Graph Construction and Features Mapping

We expect the input of our network to be an undirected graph of
linear skinning mesh G = (V, §,U) with V = {1, ..., N} being the
set of nodes, which also indicates the vertices of mesh, & C V xV
denotes the set of edges between nodes, and U € [0, 1]NV*N s the
adjacency matrix where u(i, j) € [0, 1] indicating whether there is
an edge between nodes i and j, (i, j) € &. For a node v; € V, its
neighboring nodes set is represented by N (i).

For a node v; € V, we apply the same definition as in [18].
The attribute vector is defined as v; [piT, nl.T, sl.T], where p; € R3
is the vertex position, n; € R3 is the normal of the vertex, and
si € R/ is the distance vector to all J skeleton joints. Thus, v;
contains both mesh skinning appearance attributes which indicate
the features of the vertex itself, connectivity between other vertices,
and the distance attributes from the vertex to joints which implies
a positional relationship between the vertex and control skeleton.

13D 20, May 5-7, 2020, San Francisco, CA, USA

Next, for the input of the whole network, features of N nodes
are described as gl% = {1, ... i, ... Gn} € RNVxd 44 represent
the features of each vertex in graph G whose spatial relations are
locally defined by the pseudo-coordinates in U. d (01 is the input
dimension.

The features of every node i are first transformed using a nonlin-
ear feature transformation module. The module consists of linear
layers followed by nonlinear activation and normalization. Suppose
that L € R¥”'*d" i 4 linear weight matrix of the first linear layer
where dl!] is the dimension of the output features after this layer.
The feature dimension is transformed from d[°! to 4l1] through
this layer where the trained weight L is independent of the vary-
ing numbers of vertices. By this features mapping process, the
input features are transformed into normalized high-dimensional
features that could provide rotation and translation invariance in
some degree with enough training data.

3.2 GAT Block

Graph neural networks are capable of dealing with non-Euclidean
data like mesh. For our character deformation prediction, one chal-
lenge is to use prior mesh graph information to inductively general-
ize the graph features of mesh that have never been seen before. [26]
introduces an graph-attention-based architecture to compute the
hidden representation of each node by aggregating neighborhood
features with different weights, without the need to know the entire
graph structure upfront. Inspired by this, we proposed a GAT block
architecture shown in Fig. 3. The GAT block consists of a graph-
attention-based aggregation stream and a self-reinforced stream.
The aggregation stream is used to compute the hidden representa-
tions of each node in graphs, by applying its adjacent features using
a graph attention network. In addition to the neighboring nodes
aggregated by graph convolution, strengthening single node fea-
tures is also necessary to accurately convey information to deeper
layers. Therefore, we designed a self-reinforced stream to transform
the node’s own features and concatenate them with the output of
the graph convolution. These features, along with the aggregation
steam obtained features, are then fed into next GAT block.

After nonlinear transformation, the node features are input into

GAT blocks. Here, we use g[l] = {gﬂl], ey ﬁl[l], ey _(71[\17] },ﬁi[l] e rd"

and gl = {ﬂlﬂ]’""ﬁym’"'ﬁxﬂl}’gx’ml] e pA™Y 4o repre-

sent a input and output of one GAT block, where dl!l and ql!+1]
indicate the feature dimensions after previous / and [+ 1 layers’ fea-
ture transformation. The overall process of feature transformation
inside one GAT block can be expressed as §l[l+1] = fGATB (g‘i[l]).

Specifically, for the graph-attention-based aggregation streams,
given a set of node features, they firstly need to be pre-processed so
that they can be applied to each node by linear transformation to
obtain higher dimensional expressions. The transformed features
can be expressed as:

=[1 S[1
1wl 1)
where the trainable parameter of the transformation W is a weight

1 . .
matrix W € RF xd!]. F denotes the transformed feature dimension
of a node in the aggregation stream.

Tianxing Li, Rui Shi, and Takashi Kanai

Although aggregation streams could integrate features from
first-order neighboring nodes, the features of the node itself are di-
minished in this aggregation. We designed a self-reinforced stream

[

which is a linear transformation process for ﬁl. :

Fl = ggl! @)
where H is a trainable weight matrix H € RAFxd!! Here, f is the
hyper-parameter determining the importance of the self-reinforce
stream.

For aggregation steam, as stated in [26], a shared, masked atten-
tion mechanism is performed that only computes attention coeffi-
cients with the neighboring nodes N (i) of a node which ensures
that structural information is not lost. Furthermore, to make the
results of attention coefficients across different neighborhoods com-
parable, they are normalized using the softmax function to obtain
attention weights:

" exp(LeakyReLU(@l"l" (21" I21')))

aij

Sken(exp(LeakyReLU(@!" ' 12)))

where ai[}] e R. !l € R?F indicates the weight vector and ()T
represents its transposition. || is the concatenation operation that
features Zj (! and features from neighboring nodes are firstly con-

catenated, and then this concatenation embedding result with a

learnable weight vector @ (117 are executed by dot product. During
the process of calculating attention coefficient, to enhance nonlinear
expression, LeakyReLU is applied as the activation function.

The obtained attention weights are then linearly combined with
their corresponding features to yield the output features of the
aggregation steam. To improve the stability and representation
ability of the model, multi-head attention mechanism K introduced
in [25] is also adopted to execute transformation K times with
different training parameters of aggregation operations. In addition
to the aggregation steam, to enhance the expression of self-features,
our designed self-reinforced steam is concatenated with the features
from the graph-attention-based aggregation steam (as shown in
Fig. 3) to form the final output features of one GAT block:

5}”” = fGATB(fZ-[l])

=o(K,C Y alwhglhy) @
JEN()

where o represents the nonlinear transformation tanhshrink. Since
the output type is displacement which could be positive and nega-
tive, tanhshrink is able to retain negative information. Meanwhile,

it can alleviate gradient vanishing problem (tanh cannot) and there-
[k
i

the attention weights and input linear transformation’s weight ma-
trix computed by the k;j, attention mechanism in the I;j layer. For

fore is selected in our network. a;; "« and WK respectively indicate

one GAT block, the dimension of output features d (1] equals the
concatenation dimension of aggregation stream and self-reinforced
stream KF + SKF.

DenseGATs: A Graph-Attention-Based Network for Nonlinear Character Deformation

linear

Ui 3
92 MU

aﬂ i concat

S[l+1
i — g o
51 “J A6
94 14 a[”
15 =[]
6
L1
b
(a)

13D 20, May 5-7, 2020, San Francisco, CA, USA

Self-Reinforced Stream —| (N X BKF)

Graph-Attention-Based

:
Aggregation Stream

= N x dlt+1]

(b)

Figure 3: Illustration of inside of GAT block by the node 1 (feature vector is ﬁg”) on its neighboring nodes. The blue color
indicates the process of graph-attention-based aggregation stream gathers features from neighboring nodes with different
weights [26]. The yellow color indicates the process of self-reinforced stream that linearly transforms the features of the node
1. These two streams are then concatenated to produce new feature representation. In (a), we show the situation of multi-head
attention K = 1. In (b), the input feature dimension into one GAT block is d (] the output dimension of aggregation stream is
F, the number of multi-head attention is K, and the hyper-parameters . So the output feature dimension is d [41] — KF + BKF.

3.3 Dense Module

Due to the complexity and significant amount of features in our
mesh graph, there is a need to apply very deep networks to benefit
from their advantages. However, for training deep graph convo-
lutional networks, the problem of gradient vanishing will become
more serious as the number of network layer increases. To address
this problem, DenseGCNs[16] borrows the concept from DenseNet
[15] by introducing dense connections to deep GCN frameworks
and successfully be applied on segmentation task with specific
point cloud graph structure. Inspired by it, we densely connect our
GAT blocks as a dense module for further training deep layers of
GAT blocks to better help process large volumes of complicated
mesh data. As opposed to DeepGCNs, our dense module allows
for handling unseen graph structures and efficiently computing
with difference importance to nodes of a same neighborhood. For
simplicity, we use a single function fgaTp to represent the trans-
formation process of one GAT block in the rest of this paper. In a
dense module, among several GAT blocks, direct connections are
introduced from one block to all subsequent blocks. Suppose, there
are m GAT blocks in one dense module, the layer of the first GAT
block is [, thus, the (I + m),;, layer receives features of all layers
starting from the ;;, layer. The propagation can be defined as:

[l S[l+m— _ S[l+m—
g™ = foarp(gltm, glirm=1ly glivm=1]

;
= fGATB@i[Hm_le 9[l+m_1])||--~||fGATB(§l-UJ, 9[l])||_f7l-llJ
(5)

where 6] represents all parameters of the transformation function
fcaTp in different layers. The §l[l+m] is the result of fusing all the
intermediate GAT block layer outputs. Since we connect GAT blocks
in a dense pattern, we refer to this architecture as “dense module”,
and the whole network refers to “DenseGATs”. Note that, because
of the dense connection, for each GAT block (except the first block)

in a dense module, the output features will consist of all preceding

blocks’ features, not only one block feature (KF + SKF) for each
node.

Between two adjacent dense modules, we adopt one GAT block
as the transition. This operation plays the role of information inte-
gration.

3.4 Implementation Details

Based on the amount of training data available, we explored a set
of parameters which can ensure the satisfied result while balancing
the size of network.

As shown in Fig. 2, we first feed the input graph features into
a nonlinear transformation module which involves two fully con-
nected hidden layers with 32 hidden units and followed by tanh
activation. Then the transformed features are fed into dense mod-
ules. The network we propose involves three dense modules, each of
which consists of six GAT blocks. We found this setting is sufficient
to approximate satisfactory results without excessively increasing
training time. To ensure maximum information flow between GAT
blocks in one module, all blocks are densely connected. For the
internal structure of the GAT block, we adopt a graph-attention-
based aggregation stream with the hidden features number of 8
and the multi-head number of 8. To increase the effectiveness of
the interpenetration, in the self-reinforced stream, input features
are processed by a linear layer with the feature size of 0.125 times
the aggregation stream output feature size (f = 0.125). The final
layer of one GAT block is applied a tanhshrink activation function.
We refer to GAT blocks between each dense module as transition
blocks which have the same parameters with GAT blocks inside
the dense module. After all three dense modules, the resulting fea-
tures are taken as being input to two fully connected hidden layers
with 512 and 128 hidden units and followed by tanh activation. All
the outputs of layers in the network are applied with 1D batch
normalization.

We trained our model with NVIDIA GeForce RTX2080Ti GPU
and set batch size of 8. During the training process, we trained
the model using the Adam optimization method, with the initial

13D 20, May 5-7, 2020, San Francisco, CA, USA

learning rate of le-3. We further set the reducing learning rate
with decay factor of 0.75 when the loss has stopped decreasing
beyond eight epochs. The lower boundary on the learning rate of
all param groups is set as 5e-7. For the loss function of our network,
we choose Mean Squared Error (MSE) to minimize the distance
between predicted displacement distributions and the ground truth
displacement distribution.

It is noteworthy that, the training parameters in our network
is independent of mesh vertices, but is correlated with the feature
dimension of input graph. Thus, our network architecture is ap-
plicable to inductive learning where the trained network could be
generalized to approximate deformation for new character mesh,
regardless of the number of vertices.

4 EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, we evaluate the performance of our framework both
qualitatively and quantitatively. There are about 150 character mod-
els with different customizations in our dataset created with Adobe
Fuse CC, and all of them are embedded with corresponding skeleton
structures properly. To produce basic skinning data for training, the
linear blend skinning method is used with eight maximum of joints
influencing each vertex for rough deformation. In addition, to pro-
duce ground truth data, we manually refined the deformed skin that
allows the character models to achieve satisfactory deformations
under any of the poses. Fig. 4 shows several test example characters
with rest pose in our dataset. These example characters with the
statistics are shown in Tab. 1 including the number of vertices,
heights, and number of joints. With all characters in our dataset, in
order to save GPU memories and training time, several character
bodies without head part are taken into account. All characters are
set with a standard skeleton structure, for a total of 65 joints for
the entire skeleton. To accurately predict the mesh deformation
generated under any poses, we used two strategies to create the
training examples. Firstly, in order to cover the range of all possible
poses, we manually set each skeletal joint in a reasonable range for
the rotation and scaling, and then generate poses by independently
and randomly sampling in the range of all joints. Furthermore, we
animate our character models with motions that appear frequently
in animation such as walking, jumping, running and dancing pro-
vided by TurboSquid. In total, there are about 8500 poses generated
with these methods for our characters, and several examples are
shown in Fig. 5. Due to the large amount of computation during
the training, we randomly select one thousand consecutive vertices
from each character mesh at each training epoch to ensure stable
training while saving memories. To verify the effectiveness of our
proposed network, we used 125 training character models and five
validation character models of the dataset with about 8500 poses.
The remaining 20 character models with random poses are used
for testing the network.

4.1 Model Accuracy

To quantitatively evaluate the performance of our network, we mea-
sured the average distance error, max distance error, and minimum
distance error of our predicted deformations. For each character
model in the test set, we animated them using walking motions

Tianxing Li, Rui Shi, and Takashi Kanai

THTTT

Figure 4: Example characters with index 1-5 in our dataset.
These characters have completely different representative
dresses (tops, bottoms, shoes) and the same skeleton struc-
ture.

Table 1: Statistics for our example characters (as shown in
Fig. 4).

Character Index | Vertices | Heights | Joints
1 9035 177 cm 65
2 10220 166 cm 65
3 9303 167 cm 65
4 9005 181 cm 65
5 10320 182 cm 65

Figure 5: Example poses of our character. These includes typ-
ical poses (walking, running, jumping, and dancing) and ran-
dom poses.

and computed the prediction vertex errors across all frames. Tab. 2
shows the prediction errors for the test models. It can be observed
that our proposed method can effectively predict the deformation
for new characters with very low errors. With our network, the pre-
diction time for one character (e.g., No.2 character) in each frame is
about 31ms. In Fig. 6, we further plot the average error of the No.2
test character to visualize error distribution over the mesh for all
frames of dancing and running animations. From these two plots,
most of deviation distances are are around 0.1cm that within the
allowable range of accuracy. And the number of vertices decreases
exponentially with increasing distance errors. We found that the
performance of predicting deformation with running animation
is better than with dancing animation, where there exists several
vertices in the dancing motion that have the estimated errors of
more than 0.5cm. This is because the dancing animation includes
some extreme poses which are beyond the range of network it was
trained on.

To verify that our trained network is able to predict satisfactory
and natural deformation results, we animate the test models with

DenseGATs: A Graph-Attention-Based Network for Nonlinear Character Deformation

Table 2: Prediction errors in “cm” between the ground truth
and predicted vertices.

Character Index | mean error | max error | min error
1 0.0662 1.1639 0.0003
2 0.1045 1.5832 0.0006
3 0.0947 1.4909 0.0003
4 0.0820 1.4201 0.0003
5 0.1289 1.6966 0.0005

Distance Errors — Dancing Distance Errors — Running

80000 100000

60000

40000

number of vertices

number of vertices
B =) =]
s 8 8
g 38 8
S 8 98
s 38 8

20000
20000

0
0.000.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
vertex distance errors(cm)

0
0.00 0.250.50 0.75 1.00 1.25 1.50 1.75 2.00
vertex distance errors(cm)

Figure 6: Distribution of vertex errors. The left is for dancing
animation, and the right is for running animation.

weightlifter motion as shown in Fig. 7. We focus on some contact
regions where mesh deformation volume always cannot be main-
tained and is highly prone to artefacts. The results approximated
by our method are hardly distinguishable from the ground truth,
which demonstrates that our network is able to correct the rough
linear deformation to the more complex nonlinear one.

We provide further intuitive deformation results with multiple
poses in different animations using error color map to qualitatively
evaluate our method in Fig. 8. In Fig. 9, we also provide a side-by-
side comparison of the ground truth, the approximated deformation,
and the error color map of a test character with a walking posture.
With our proposed network, the approximated deformation results
are visually similar to the ground truth. It can be noted that the
largest deformation errors are mainly in the trousers (especially the
top of trousers) of the character. The deformations in these regions
are always influenced by multiple bones. In addition, the trousers
worn by the test character are quiet loose, whose mesh features
are significantly different from those in our training set. And these
reasons result in some inaccurate approximation.

4.2 Comparisons

We compare our method with classical deformation methods LBS
and DQS. As shown in Fig. 10, the deformation with LBS method
shows the obvious artefact of volume loss when twisting the elbow.
Unnatural deformations are always found in the areas near the
shoulder, elbow, waist and the bottom of the pants. It is hard to
assign reliable weights with direct LBS method especially for those
areas influenced by multiple bones. For DQS result, bulging artifacts
near the joints are very obvious which still need artistic corrections.
Our method, in contrast, given the inaccurate LBS deformation, can

13D 20, May 5-7, 2020, San Francisco, CA, USA

U0 BULIOJA(] ABIUI']

A A A

iy, punoin)

3%
P

Figure 7: Close-up of our test character’s contact regions in
three frames of weightlifter motions. Based on rough lin-
ear deformation, our method corrects linear deformations
to nonlinear ones by per vertex displacement correction.

9 ("] e 9 ° ' >1

0.5

Figure 8: Result of deformation approximation among dif-
ferent characters with different poses. The vertices of the
predicted mesh are colored to indicate per-vertex distance
prediction errors.

0.5

Figure 9: Comparison of ground truth (left), prediction re-
sults (center), and color map (right) indicating per-vertex
distance error.

accurately approximate most displacements of vertices and correct
them to nonlinear ones with no noticeable errors.

To verify the effectiveness of our proposed network, we also
conducted experiments on character models in the test set with
hip-hop dancing motion to compare the performance with different
network structures like those shown in Tab. 3. We first compare

13D 20, May 5-7, 2020, San Francisco, CA, USA

e £ A
) D\

0.5

Ground Truth LBS DQS Ours

Figure 10: Comparison of ground truth, color map of LBS,
DQS, and our prediction.

Table 3: Evaluation of predicted distance errors (cm) using
different network architectures.

Network mean error | max error | min error
DenseGATs (Ours) 0.0961 1.2551 0.0004
Ori.GAT 0.1693 2.1643 0.0009
NeuroSkinning network 0.1378 1.7689 0.0006
Ours w/o self-reinforcement 0.1153 1.3986 0.0002
Ours w/o dense connection 0.1425 1.4852 0.0006
| ¢ ¢ ¢ ¢ -
0.5
0

() (b) © (@ ()

Figure 11: Comparison of different network architectures.
From left to right: (a) ours, (b) original GAT, (c) NeuroSkin-
ning, (d) ours (no self-reinforcement stream), (e) ours (no
dense connection).

with the original GAT [26] network which contains four graph
convolutional layers. Next, we evaluated the network described
in NeuroSkinning [18] and followed the same experimental set-
tings. Based on our proposed structure, we respectively removed
the designed self-reinforced stream in each GAT block and dense
connections between each GAT block. The prediction results are
summarized in Tab. 3 and an example frame of the animation are
shown in Fig. 11. It could be observed that the original GAT net-
work sometimes fails to represent complicated graph information
and produces highest errors due to the limited representation of
the shallow convolutional layers. The NeuroSkinning network has
the same problem as the original GAT because there are only three
graph convolutional layers in the whole structure. For DenseGATs

Tianxing Li, Rui Shi, and Takashi Kanai

structure without self-reinforced stream and the structure of mul-
tiple GAT blocks without dense connection, features can be well
learned and the obvious approximation errors can be improved to
a certain extent, but they still cause some undesirable deformation
in several joint regions. In contrast, with our proposed network ,
the best prediction result can be obtained with improvement rates
of about 16.7% and 32.6% compared with the DenseGATs without
self-reinforced stream and without dense connection. This sug-
gests that out network has better generalization ability owing to
its self-reinforcement step and dense propagation step.

5 CONCLUSION AND FUTURE WORK

We have presented a DenseGATs network that leverages existing
well-designed skinning features of characters to accurately pre-
dict deformation for new characters. Our GAT blocks and dense
modules allow for efficient utilization and transmission of self and
adjacent information throughout the network. Experimental results
demonstrate that through these strategies, the skinning features
from other characters can be reused and the network is able to
generate realistic nonlinear deformation results that are very close
to ground truth. The high-quality deformation predicted with our
method can be directly used for masses of similar characters in
films, thus reducing the efforts made by artists to re-rig for new
characters each time.

There are also a number of limitations and potential improve-
ments that could be addressed as future work. First, our method
requires many training samples (both characters and poses), and its
generalization ability is substantially dependent on the character
mesh information that has already been learned. Our network may
fail to accurately predict deformations if the mesh geometry and
poses vary dramatically. In the future, we would like to expand
our training set as well as design more efficient feature representa-
tion methods (e.g., the graph topology with rotational-invariance).
Meanwhile, with the limited number of characters in dataset, next
we aim to study related graph learning methods such as applying
down-sampling to graphs to further improve the generalization
ability of our network. Secondly, we add displacement to each ver-
tex to make the deformation nonlinear. However, this operation
will sometimes unexpectedly displace individual vertices and make
the deformation become not smooth. In the future, we hope to
address this limitation by investigating a new regression method
guaranteed to smooth deformations while realizing rich details ac-
curately. Thirdly, currently, we train all characters together and do
not consider the material attributes of different garments and skin.
To perform perfect visual effects of deformations, future work can
independently train networks with different materials. Addition-
ally, our dataset involves human characters with the same skeleton
structure. In the future, we hope to use our network to generalize
other models with different number of joints.

ACKNOWLEDGMENTS

Tianxing Li and Rui Shi acknowledge receipt of Japanese govern-
ment (MEXT) scholarships. This work was partially supported by
JSPS KAKENHI, Grant Number JP19K11990.

DenseGATs: A Graph-Attention-Based Network for Nonlinear Character Deformation 13D 20, May 5-7, 2020, San Francisco, CA, USA

REFERENCES 2011), 12 pages. https:/doi.org/10.1145/2010324.1964932
[1] Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou, John Boaz Lee, Xiangnan Kong [23] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
Theodore L. Willke, and Hoda Eldardiry. 2017. Inductive Representation Learning and Michael M. Bronstein. 2017. Geometric Deep Learning on Graphs and

in Large Attributed Graphs. arXiv:1710.09471 Manifolds Using Mixture Model CNNs. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer Society, Washington, DC,

[2] James Atwood and Don Towsley. 2016. Diffusion-convolutional Neural Networks.)
USA, 5115-5124. https://doi.org/10.1109/CVPR.2017.576

In Proceedings of the 30th International Conference on Neural Information Processing

Systems (NIPS’16). Curran Associates Inc., USA, 2001-2009. http://dl.acm.org/ (24] Junjun Pan, Lijuan Chen, Yuhan Yang, and Hong Qin. 2018. Automatic Skinning
citation.cfm?id=3157096.3157320 and Weight Retargeting of Articulated Characters Using Extended Position-Based
[3] Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O’Brien. 2018. Fast Dynamics. The Visual Computer 34, 10 (2018), 1285-1297.

and Deep Deformation Approximations. ACM Trans. Graph. 37, 4, Article 119 [25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
(July 2018), 12 pages. _https:/doi.org/10.1145/3197517.3201300 Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral You Need. In Proceedings of the 31st International Conference on Neural Informa-

Networks and Locally Connected Networks on Graphs. arXiv:1312.6203 tion Processing Systems (NIPS’17). Curran Associates Inc., USA, 5998-6008.
[26] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph Attention Networks. arXiv:1710.10903

[5] Dan Casas and Miguel A. Otaduy. 2018. Learning Nonlinear Soft-Tissue Dynamics
for Interactive Avatars. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article

Article 10 (July 2018), 15 pages. https://doi.org/10.1145/3203187 [27] Hongyi Xu and]'ernej Barbic¢. 2016. Pose-space Subspace' Dynamics. ACM Trans.
[6] Olivier Dionne and Martin de Lasa. 2013. Geodesic Voxel Binding for Produc- Graph. 35, 4, Article 35 (July 2016), 14 pages. https://doi.org/10.1145/2897824.
tion Character Meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics 2925916 . . o
Symposium on Computer Animation (SCA ’13). ACM Press, New York, NY, USA, (28] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
173-180. https://doi.org/10.1145/2485895.2485919 Changcheng Li, and Maosong Sun. 2018. Graph Neural Networks: A Review of

[7] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-Scale Learnable Methods and Applications. arXiv:1812.08434

Graph Convolutional Networks. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. ACM Press, New York,
NY, USA, 1416-1424. https://doi.org/10.1145/3219819.3219947
[8] Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian
Coros, and Markus Gross. 2012. Rig-space Physics. ACM Trans. Graph. 31, 4,
Article 72 (July 2012), 8 pages. https://doi.org/10.1145/2185520.2185568
[9] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets
on graphs via spectral graph theory. Applied and Computational Harmonic
Analysis 30, 2 (March 2011), 129-150. https://doi.org/10.1016/j.acha.2010.04.
005
Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks
on Graph-Structured Data. arXiv:1506.05163
Ladislav Kavan, Steven Collins, Jifi Zara, and Carol O’Sullivan. 2007. Skinning
with Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games (I3D "07). ACM Press, New York, NY, USA, 39-46. https:
//doi.org/10.1145/1230100.1230107
Tsuneya Kurihara and Natsuki Miyata. 2004. Modeling Deformable Human Hands
from Medical Images. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA '04). Eurographics Association, Goslar,
DEU, 355-363. https://doi.org/10.1145/1028523.1028571
[13] Binh Huy Le and Zhigang Deng. 2014. Robust and Accurate Skeletal Rigging
from Mesh Sequences. ACM Trans. Graph. 33, 4, Article 84 (July 2014), 10 pages.
https://doi.org/10.1145/2601097.2601161
[14] J.P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose Space Deformation: A
Unified Approach to Shape Interpolation and Skeleton-driven Deformation. In
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH "00). ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 165-172. https://doi.org/10.1145/344779.344862
[15] Guohao Li, Matthias Miiller, Ali K. Thabet, and Bernard Ghanem. 2017. Densely
Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Washington, DC, USA,
2261-2269. https://doi.org/10.1109/CVPR.2017.243
Guohao Li, Matthias Miiller, Ali K. Thabet, and Bernard Ghanem. 2019. Can
GCNs Go as Deep as CNNs? (2019). arXiv:1904.03751
[17] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive Graph
Convolutional Neural Networks. In Proc. 32nd AAAI Conference on Artificial
Intelligence. AAAI Press, Palo Alto, CA, 3546-3553.
[18] Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019.
NeuroSkinning: Automatic Skin Binding for Production Characters with Deep
Graph Networks. ACM Trans. Graph. 38, 4, Article 114 (July 2019), 12 pages.
https://doi.org/10.1145/3306346.3322969
Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM
Trans. Graph. 34, 6, Article Article 248 (Oct. 2015), 16 pages. https://doi.org/10.
1145/2816795.2818013
[20] Ran Luo, Tianjia Shao, Huamin Wang, Weiwei Xu, Xiang Chen, Kun Zhou,
and Yin Yang. 2018. NNWarp: Neural Network-Based Nonlinear Deformation.
IEEE Transactions on Visualization and Computer Graphics (2018), 14. https:
//doi.org/10.1109/TVCG.2018.2881451 Early Access.
[21] Nadia Magnenat-Thalmann, Richard Laperriére, and Daniel Thalmann. 1988.
Joint-dependent Local Deformations for Hand Animation and Object Grasping.
In Proceedings on Graphics Interface *88. Canadian Information Processing Society,
Toronto, Ont., Canada, 26-33. http://dl.acm.org/citation.cfm?id=102313.102317
[22] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf,
Joseph Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character
Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July

[10

(1

=
&

[16

[19

http://arxiv.org/abs/1710.09471
http://dl.acm.org/citation.cfm?id=3157096.3157320
http://dl.acm.org/citation.cfm?id=3157096.3157320
https://doi.org/10.1145/3197517.3201300
http://arxiv.org/abs/1312.6203
https://doi.org/10.1145/3203187
https://doi.org/10.1145/2485895.2485919
https://doi.org/10.1145/3219819.3219947
https://doi.org/10.1145/2185520.2185568
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
http://arxiv.org/abs/1506.05163
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/1028523.1028571
https://doi.org/10.1145/2601097.2601161
https://doi.org/10.1145/344779.344862
https://doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/1904.03751
https://doi.org/10.1145/3306346.3322969
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1109/TVCG.2018.2881451
https://doi.org/10.1109/TVCG.2018.2881451
http://dl.acm.org/citation.cfm?id=102313.102317
https://doi.org/10.1145/2010324.1964932
https://doi.org/10.1109/CVPR.2017.576
http://arxiv.org/abs/1710.10903
https://doi.org/10.1145/2897824.2925916
https://doi.org/10.1145/2897824.2925916
http://arxiv.org/abs/1812.08434

	Abstract
	1 Introduction
	2 Related Work
	3 DenseGATs
	3.1 Graph Construction and Features Mapping
	3.2 GAT Block
	3.3 Dense Module
	3.4 Implementation Details

	4 Experimental Results and Discussion
	4.1 Model Accuracy
	4.2 Comparisons

	5 Conclusion and Future Work
	Acknowledgments
	References

